IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v140y2022ics0378426621002673.html
   My bibliography  Save this article

Coherent risk measures alone are ineffective in constraining portfolio losses

Author

Listed:
  • Armstrong, John
  • Brigo, Damiano

Abstract

We show that coherent risk measures alone are ineffective in curbing the behaviour of investors with limited liability or excessive tail-risk seeking behaviour if the market admits statistical arbitrage opportunities which we term ρ-arbitrage for a risk measure ρ. We show how to determine analytically whether such ρ-arbitrage portfolios exist in complete markets and in the Markowitz model. We also consider realistic numerical examples of incomplete markets and determine whether Expected-Shortfall arbitrage exists in these markets. We find that the answer depends heavily upon the probability model selected by the risk manager but that it is certainly possible for expected shortfall constraints to be ineffective in realistic markets. Since value at risk constraints are weaker than expected shortfall constraints, our results can be applied to value at risk.

Suggested Citation

  • Armstrong, John & Brigo, Damiano, 2022. "Coherent risk measures alone are ineffective in constraining portfolio losses," Journal of Banking & Finance, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:jbfina:v:140:y:2022:i:c:s0378426621002673
    DOI: 10.1016/j.jbankfin.2021.106315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426621002673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2021.106315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. George M. Constantinides & Michal Czerwonko & Jens Carsten Jackwerth & Stylianos Perrakis, 2011. "Are Options on Index Futures Profitable for Risk‐Averse Investors? Empirical Evidence," Journal of Finance, American Finance Association, vol. 66(4), pages 1407-1437, August.
    5. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    6. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. George M. Constantinides & Jens Carsten Jackwerth & Stylianos Perrakis, 2009. "Mispricing of S&P 500 Index Options," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1247-1277, March.
    9. John Armstrong, 2016. "The Markowitz Category," Papers 1611.07741, arXiv.org, revised Jun 2018.
    10. Teemu Pennanen, 2011. "Convex Duality in Stochastic Optimization and Mathematical Finance," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 340-362, May.
    11. Thierry Post & Iňaki Rodríguez Longarela, 2021. "Risk Arbitrage Opportunities for Stock Index Options," Operations Research, INFORMS, vol. 69(1), pages 100-113, January.
    12. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    13. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    2. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    3. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    4. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    5. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    6. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    7. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    8. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    9. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    10. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    11. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    12. Bianchi, Robert J. & Bornholt, Graham & Drew, Michael E. & Howard, Michael F., 2014. "Long-term U.S. infrastructure returns and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 314-325.
    13. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2020. "Beyond expected utility: Subjective risk aversion and optimal portfolio choice under convex shortfall risk measures," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1114-1126.
    14. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493, arXiv.org, revised Sep 2016.
    15. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    16. Matmoura, Yassine & Penev, Spiridon, 2013. "Multistage optimization of option portfolio using higher order coherent risk measures," European Journal of Operational Research, Elsevier, vol. 227(1), pages 190-198.
    17. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    18. John Armstrong & Damiano Brigo, 2019. "The ineffectiveness of coherent risk measures," Papers 1902.10015, arXiv.org, revised Oct 2020.
    19. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    20. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:140:y:2022:i:c:s0378426621002673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.