IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1902.10015.html
   My bibliography  Save this paper

The ineffectiveness of coherent risk measures

Author

Listed:
  • John Armstrong
  • Damiano Brigo

Abstract

We show that coherent risk measures are ineffective in curbing the behaviour of investors with limited liability or excessive tail-risk seeking behaviour if the market admits statistical arbitrage opportunities which we term $\rho$-arbitrage for a risk measure $\rho$. We show how to determine analytically whether such $\rho$-arbitrage portfolios exist in complete markets and in the Markowitz model. We also consider realistic numerical examples of incomplete markets and determine whether expected shortfall constraints are ineffective in these markets. We find that the answer depends heavily upon the probability model selected by the risk manager but that it is certainly possible for expected shortfall constraints to be ineffective in realistic markets. Since value at risk constraints are weaker than expected shortfall constraints, our results can be applied to value at risk. By contrast, we show that reasonable expected utility constraints are effective in any arbitrage-free market.

Suggested Citation

  • John Armstrong & Damiano Brigo, 2019. "The ineffectiveness of coherent risk measures," Papers 1902.10015, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:1902.10015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1902.10015
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    4. John Armstrong, 2016. "The Markowitz Category," Papers 1611.07741, arXiv.org, revised Jun 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Herdegen & Nazem Khan, 2022. "Mean‐ρ$\rho$ portfolio selection and ρ$\rho$‐arbitrage for coherent risk measures," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 226-272, January.
    2. Martin Herdegen & Nazem Khan, 2020. "Mean-$\rho$ portfolio selection and $\rho$-arbitrage for coherent risk measures," Papers 2009.05498, arXiv.org, revised Jul 2021.
    3. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2024. "The importance of dynamic risk constraints for limited liability operators," Annals of Operations Research, Springer, vol. 336(1), pages 861-898, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, John & Brigo, Damiano, 2022. "Coherent risk measures alone are ineffective in constraining portfolio losses," Journal of Banking & Finance, Elsevier, vol. 140(C).
    2. Hui Mi & Zuo Quan Xu & Dongfang Yang, 2023. "Optimal Management of DC Pension Plan with Inflation Risk and Tail VaR Constraint," Papers 2309.01936, arXiv.org.
    3. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    4. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    5. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    6. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    7. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    8. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    9. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    10. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    11. Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
    12. Ebnother, Silvan & Vanini, Paolo, 2007. "Credit portfolios: What defines risk horizons and risk measurement?," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3663-3679, December.
    13. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    14. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    15. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    16. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    17. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    18. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    19. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.
    20. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.10015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.