IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.12154.html
   My bibliography  Save this paper

Risk, utility and sensitivity to large losses

Author

Listed:
  • Martin Herdegen
  • Nazem Khan
  • Cosimo Munari

Abstract

Risk and utility functionals are fundamental building blocks in economics and finance. In this paper we investigate under which conditions a risk or utility functional is sensitive to the accumulation of losses in the sense that any sufficiently large multiple of a position that exposes an agent to future losses has positive risk or negative utility. We call this property sensitivity to large losses and provide necessary and sufficient conditions thereof that are easy to check for a very large class of risk and utility functionals. In particular, our results do not rely on convexity and can therefore also be applied to most examples discussed in the recent literature, including (non-convex) star-shaped risk measures or S-shaped utility functions encountered in prospect theory. As expected, Value at Risk generally fails to be sensitive to large losses. More surprisingly, this is also true of Expected Shortfall. By contrast, expected utility functionals as well as (optimized) certainty equivalents are proved to be sensitive to large losses for many standard choices of concave and nonconcave utility functions, including $S$-shaped utility functions. We also show that Value at Risk and Expected Shortfall become sensitive to large losses if they are either properly adjusted or if the property is suitably localized.

Suggested Citation

  • Martin Herdegen & Nazem Khan & Cosimo Munari, 2024. "Risk, utility and sensitivity to large losses," Papers 2405.12154, arXiv.org.
  • Handle: RePEc:arx:papers:2405.12154
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.12154
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koch-Medina, Pablo & Moreno-Bromberg, Santiago & Munari, Cosimo, 2015. "Capital adequacy tests and limited liability of financial institutions," Journal of Banking & Finance, Elsevier, vol. 51(C), pages 93-102.
    2. Felix-Benedikt Liebrich & Cosimo Munari, 2022. "Law-Invariant Functionals that Collapse to the Mean: Beyond Convexity," Mathematics and Financial Economics, Springer, volume 16, number 2, December.
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    4. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    5. Patrick Cheridito & Ulrich Horst & Michael Kupper & Traian A. Pirvu, 2016. "Equilibrium Pricing in Incomplete Markets Under Translation Invariant Preferences," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 174-195, February.
    6. Niushan Gao & Cosimo Munari, 2020. "Surplus-Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1342-1370, November.
    7. Landsberger, Michael & Meilijson, Isaac, 1990. "Lotteries, insurance, and star-shaped utility functions," Journal of Economic Theory, Elsevier, vol. 52(1), pages 1-17, October.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    10. Daniel Kahneman & Jack L. Knetsch & Richard H. Thaler, 1991. "Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 193-206, Winter.
    11. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    12. Bosch-Domènech, Antoni & Silvestre, Joaquim, 2010. "Averting risk in the face of large losses: Bernoulli vs. Tversky and Kahneman," Economics Letters, Elsevier, vol. 107(2), pages 180-182, May.
    13. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    14. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    15. Erio Castagnoli & Giacomo Cattelan & Fabio Maccheroni & Claudio Tebaldi & Ruodu Wang, 2021. "Star-shaped Risk Measures," Papers 2103.15790, arXiv.org, revised Apr 2022.
    16. Armstrong, John & Brigo, Damiano, 2019. "Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 122-135.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Steven Kou & Xianhua Peng, 2014. "Expected shortfall or median shortfall," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-6.
    19. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60(2), pages 151-151.
    20. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    21. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2014. "Beyond cash-additive risk measures: when changing the numéraire fails," Finance and Stochastics, Springer, vol. 18(1), pages 145-173, January.
    22. Michel Baes & Pablo Koch‐Medina & Cosimo Munari, 2020. "Existence, uniqueness, and stability of optimal payoffs of eligible assets," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 128-166, January.
    23. Matthew Rabin & Richard H. Thaler, 2013. "Anomalies: Risk aversion," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 27, pages 467-480, World Scientific Publishing Co. Pte. Ltd..
    24. Maria Arduca & Cosimo Munari, 2023. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Finance and Stochastics, Springer, vol. 27(3), pages 831-862, July.
    25. Koch-Medina, Pablo & Munari, Cosimo & Svindland, Gregor, 2018. "Which eligible assets are compatible with comonotonic capital requirements?," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 18-26.
    26. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    27. Milton Friedman & L. J. Savage, 1948. "The Utility Analysis of Choices Involving Risk," Journal of Political Economy, University of Chicago Press, vol. 56(4), pages 279-279.
    28. Rama Cont & Romain Deguest & Xuedong He, 2011. "Loss-Based Risk Measures," Papers 1110.1436, arXiv.org, revised Apr 2013.
    29. Felix-Benedikt Liebrich & Gregor Svindland, 2019. "Risk sharing for capital requirements with multidimensional security markets," Finance and Stochastics, Springer, vol. 23(4), pages 925-973, October.
    30. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2012. "Beyond cash-additive risk measures: when changing the num\'{e}raire fails," Papers 1206.0478, arXiv.org, revised Feb 2014.
    31. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    32. Fabio Bellini & Pablo Koch-Medina & Cosimo Munari & Gregor Svindland, 2018. "Law-invariant functionals on general spaces of random variables," Papers 1808.00821, arXiv.org, revised Jan 2021.
    33. Teemu Pennanen, 2011. "Arbitrage and deflators in illiquid markets," Finance and Stochastics, Springer, vol. 15(1), pages 57-83, January.
    34. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    35. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    36. Antoni Bosch-Domènech & Joaquim Silvestre, 2006. "Reflections on gains and losses: A 2 × 2 × 7 experiment," Journal of Risk and Uncertainty, Springer, vol. 33(3), pages 217-235, December.
    37. Schmidt, Ulrich & Traub, Stefan, 2002. "An Experimental Test of Loss Aversion," Journal of Risk and Uncertainty, Springer, vol. 25(3), pages 233-249, November.
    38. Shaun Wang, 1998. "An Actuarial Index of the Right-Tail Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(2), pages 88-101.
    39. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    2. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    3. Maria Arduca & Cosimo Munari, 2021. "Risk measures beyond frictionless markets," Papers 2111.08294, arXiv.org.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    6. Erio Castagnoli & Giacomo Cattelan & Fabio Maccheroni & Claudio Tebaldi & Ruodu Wang, 2021. "Star-shaped Risk Measures," Papers 2103.15790, arXiv.org, revised Apr 2022.
    7. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    8. Nendel, Max & Streicher, Jan, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    9. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    10. Maria Arduca & Cosimo Munari, 2020. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Papers 2012.08351, arXiv.org, revised Apr 2022.
    11. Maria Arduca & Cosimo Munari, 2023. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Finance and Stochastics, Springer, vol. 27(3), pages 831-862, July.
    12. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    13. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org, revised Aug 2024.
    14. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    15. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    16. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    17. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    18. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    19. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    20. Levy, Haim & Levy, Moshe, 2002. "Experimental test of the prospect theory value function: A stochastic dominance approach," Organizational Behavior and Human Decision Processes, Elsevier, vol. 89(2), pages 1058-1081, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.12154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.