IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v24y2014i4p627-650.html
   My bibliography  Save this article

Liquidation In Limit Order Books With Controlled Intensity

Author

Listed:
  • Erhan Bayraktar
  • Michael Ludkovski

Abstract

We consider a framework for solving optimal liquidation problems in limit order books. In particular, order arrivals are modeled as a point process whose intensity depends on the liquidation price. We set up a stochastic control problem in which the goal is to maximize the expected revenue from liquidating the entire position held. We solve this optimal liquidation problem for power-law and exponential-decay order book models and discuss several extensions. We also consider the continuous selling (or fluid) limit when the trading units are ever smaller and the intensity is ever larger. This limit provides an analytical approximation to the value function and the optimal solution. Using techniques from viscosity solutions we show that the discrete state problem and its optimal solution converge to the corresponding quantities in the continuous selling limit uniformly on compacts.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
  • Handle: RePEc:bla:mathfi:v:24:y:2014:i:4:p:627-650
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/mafi.2014.24.issue-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    2. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    3. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    4. Nicole Bäuerle & Ulrich Rieder, 2009. "MDP algorithms for portfolio optimization problems in pure jump markets," Finance and Stochastics, Springer, vol. 13(4), pages 591-611, September.
    5. Alexey Piunovskiy & Yi Zhang, 2011. "Accuracy of fluid approximations to controlled birth-and-death processes: absorbing case," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(2), pages 159-187, April.
    6. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    7. Erhan Bayraktar & Mike Ludkovski, 2009. "Optimal Trade Execution in Illiquid Markets," Papers 0902.2516, arXiv.org.
    8. A. Piunovskiy, 2009. "Random walk, birth-and-death process and their fluid approximations: absorbing case," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 285-312, October.
    9. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Ma & Eunjung Noh, 2020. "Equilibrium Model of Limit Order Books: A Mean-field Game View," Papers 2002.12857, arXiv.org, revised Mar 2020.
    2. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    3. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    4. Gerry Tsoukalas & Jiang Wang & Kay Giesecke, 2019. "Dynamic Portfolio Execution," Management Science, INFORMS, vol. 67(5), pages 2015-2040, May.
    5. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    6. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    7. Romuald Elie & Emmanuel Lépinette, 2015. "Approximate hedging for nonlinear transaction costs on the volume of traded assets," Finance and Stochastics, Springer, vol. 19(3), pages 541-581, July.
    8. Charles-Albert Lehalle, 2013. "Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading Process," Papers 1302.4592, arXiv.org.
    9. Antoine Jacquier & Hao Liu, 2017. "Optimal liquidation in a Level-I limit order book for large tick stocks," Papers 1701.01327, arXiv.org, revised Nov 2017.
    10. A. Sadoghi & J. Vecer, 2015. "Optimum Liquidation Problem Associated with the Poisson Cluster Process," Papers 1507.06514, arXiv.org, revised Dec 2015.
    11. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    13. Xin Guo & Zhao Ruan & Lingjiong Zhu, 2015. "Dynamics of Order Positions and Related Queues in a Limit Order Book," Papers 1505.04810, arXiv.org, revised Oct 2015.
    14. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    15. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    16. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    17. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    18. Aur'elien Alfonsi & Alexander Schied & Florian Klock, 2013. "Multivariate transient price impact and matrix-valued positive definite functions," Papers 1310.4471, arXiv.org, revised Sep 2015.
    19. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag`es, 2011. "Optimal posting price of limit orders: learning by trading," Papers 1112.2397, arXiv.org, revised Sep 2012.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:24:y:2014:i:4:p:627-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.