IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.06514.html
   My bibliography  Save this paper

Optimum Liquidation Problem Associated with the Poisson Cluster Process

Author

Listed:
  • A. Sadoghi
  • J. Vecer

Abstract

In this research, we develop a trading strategy for the discrete-time optimal liquidation problem of large order trading with different market microstructures in an illiquid market. In this framework, the flow of orders can be viewed as a point process with stochastic intensity. We model the price impact as a linear function of a self-exciting dynamic process. We formulate the liquidation problem as a discrete-time Markov Decision Processes, where the state process is a Piecewise Deterministic Markov Process (PDMP). The numerical results indicate that an optimal trading strategy is dependent on characteristics of the market microstructure. When no orders above certain value come the optimal solution takes offers in the lower levels of the limit order book in order to prevent not filling of orders and facing final inventory costs.

Suggested Citation

  • A. Sadoghi & J. Vecer, 2015. "Optimum Liquidation Problem Associated with the Poisson Cluster Process," Papers 1507.06514, arXiv.org, revised Dec 2015.
  • Handle: RePEc:arx:papers:1507.06514
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.06514
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    2. Bessembinder, Hendrik & Seguin, Paul J., 1993. "Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 21-39, March.
    3. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    4. D. V. Lindley, 1961. "Dynamic Programming and Decision Theory," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 10(1), pages 39-51, March.
    5. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    6. Vlad Bally & Gilles Pagès & Jacques Printems, 2005. "A Quantization Tree Method For Pricing And Hedging Multidimensional American Options," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 119-168, January.
    7. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    8. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    9. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    10. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    11. Charles Cao & Oliver Hansch & Xiaoxin Wang, 2008. "Order Placement Strategies In A Pure Limit Order Book Market," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 31(2), pages 113-140, June.
    12. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    14. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Optimal Portfolio Liquidation with Limit Orders," Papers 1106.3279, arXiv.org, revised Jul 2012.
    15. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    16. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    17. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    18. Kempf, Alexander & Korn, Olaf, 1999. "Market depth and order size1," Journal of Financial Markets, Elsevier, vol. 2(1), pages 29-48, February.
    19. Nicole Bäuerle & Ulrich Rieder, 2009. "MDP algorithms for portfolio optimization problems in pure jump markets," Finance and Stochastics, Springer, vol. 13(4), pages 591-611, September.
    20. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    21. Garman, Mark B., 1976. "Market microstructure," Journal of Financial Economics, Elsevier, vol. 3(3), pages 257-275, June.
    22. Erhan Bayraktar & Ulrich Horst & Ronnie Sircar, 2007. "Queueing Theoretic Approaches to Financial Price Fluctuations," Papers math/0703832, arXiv.org.
    23. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 159-188.
    24. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    25. Ulrich Horst & Felix Naujokat, 2011. "On derivatives with illiquid underlying and market manipulation," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1051-1066.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    2. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    3. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    5. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    6. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    7. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    10. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    11. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    12. Jin Ma & Eunjung Noh, 2020. "Equilibrium Model of Limit Order Books: A Mean-field Game View," Papers 2002.12857, arXiv.org, revised Mar 2020.
    13. S. C. P. Yam & W. Zhou, 2017. "Optimal Liquidation of Child Limit Orders," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 517-545, May.
    14. E. Bacry & J. F Muzy, 2013. "Hawkes model for price and trades high-frequency dynamics," Papers 1301.1135, arXiv.org.
    15. Charles-Albert Lehalle, 2013. "Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading Process," Papers 1302.4592, arXiv.org.
    16. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A Mean Field Game of Portfolio Trading and Its Consequences On Perceived Correlations," Papers 1902.09606, arXiv.org.
    17. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.
    18. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "Optimal liquidation under indirect price impact with propagator," LIDAM Discussion Papers ISBA 2023012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Sim, Min Kyu & Deng, Shijie, 2020. "Estimation of level-I hidden liquidity using the dynamics of limit order-book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.06514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.