IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v72y2021i5p1099-1109.html
   My bibliography  Save this article

Entropy method of constructing a combined model for improving loan default prediction: A case study in China

Author

Listed:
  • Yiheng Li
  • Weidong Chen

Abstract

In recent years, credit scoring has become an efficient tool to assist financial institutions in identifying potential default borrowers, and the combined model is widely viewed as a useful vehicle. In this study, after pre-processing based on random forest, we propose a combined logistic regression algorithm and artificial neural network model to improve the predictive performance based on actual data from a rural commercial bank under the condition that loan quality directly affects the profitability of the bank. The combined model requires a step with an entropy method to determine the entropy weights of the logistic regression model and artificial neural network model. The experimental results reveal that the proposed combined model outperforms the two base models on four evaluation metrics: accuracy (ACC), area under the curve (AUC), Kolmogorov-Smirnov statistic (KS), and Brier score (BS). Moreover, the model is superior to a state-of-the-art ensemble model, stacking.

Suggested Citation

  • Yiheng Li & Weidong Chen, 2021. "Entropy method of constructing a combined model for improving loan default prediction: A case study in China," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(5), pages 1099-1109, May.
  • Handle: RePEc:taf:tjorxx:v:72:y:2021:i:5:p:1099-1109
    DOI: 10.1080/01605682.2019.1702905
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2019.1702905
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2019.1702905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yue & Chai, Nana & Dong, Yizhe & Shi, Baofeng, 2022. "Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1158-1172.
    2. Yuan, Kunpeng & Chi, Guotai & Zhou, Ying & Yin, Hailei, 2022. "A novel two-stage hybrid default prediction model with k-means clustering and support vector domain description," Research in International Business and Finance, Elsevier, vol. 59(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:72:y:2021:i:5:p:1099-1109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.