Forecasting elections with non-representative polls
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2014.06.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Reilly C. & Gelman A. & Katz J., 2001.
"Poststratification Without Population Level Information on the Poststratifying Variable With Application to Political Polling,"
Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1-11, March.
- Reilly, Cavan & Gelman, Andrew & Katz, Jonathan N., 2000. "Post-Stratification without Population Level Information on the Post-Stratifying Variable, with Application to Political Polling," Working Papers 1091, California Institute of Technology, Division of the Humanities and Social Sciences.
- Park, David K. & Gelman, Andrew & Bafumi, Joseph, 2004. "Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls," Political Analysis, Cambridge University Press, vol. 12(4), pages 375-385.
- Justin Wolfers & Eric Zitzewitz, 2004.
"Prediction Markets,"
Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
- Wolfers, Justin & Zitzewitz, Eric, 2004. "Prediction Markets," Research Papers 1854, Stanford University, Graduate School of Business.
- Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," NBER Working Papers 10504, National Bureau of Economic Research, Inc.
- Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Discussion Papers 03-025, Stanford Institute for Economic Policy Research.
- Gelman, Andrew & King, Gary, 1993. "Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable?," British Journal of Political Science, Cambridge University Press, vol. 23(4), pages 409-451, October.
- Yair Ghitza & Andrew Gelman, 2013. "Deep Interactions with MRP: Election Turnout and Voting Patterns Among Small Electoral Subgroups," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 762-776, July.
- Lock, Kari & Gelman, Andrew, 2010. "Bayesian Combination of State Polls and Election Forecasts," Political Analysis, Cambridge University Press, vol. 18(3), pages 337-348, July.
- M. Keith Chen & Jonathan E. Ingersoll, Jr. & Edward H. Kaplan, 2008. "Modeling a Presidential Prediction Market," Management Science, INFORMS, vol. 54(8), pages 1381-1394, August.
- Jeffrey R. Lax & Justin H. Phillips, 2009. "How Should We Estimate Public Opinion in The States?," American Journal of Political Science, John Wiley & Sons, vol. 53(1), pages 107-121, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christopher Claassen & Richard Traunmüller, 2020. "Improving and Validating Survey Estimates of Religious Demography Using Bayesian Multilevel Models and Poststratification," Sociological Methods & Research, , vol. 49(3), pages 603-636, August.
- Montalvo, José G. & Papaspiliopoulos, Omiros & Stumpf-Fétizon, Timothée, 2019. "Bayesian forecasting of electoral outcomes with new parties’ competition," European Journal of Political Economy, Elsevier, vol. 59(C), pages 52-70.
- José Garcia Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian forecasting of electoral outcomes with new parties' competition," Economics Working Papers 1624, Department of Economics and Business, Universitat Pompeu Fabra.
- José García-Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian Forecasting of Electoral Outcomes with new Parties' Competition," Working Papers 1065, Barcelona School of Economics.
- Laura C. Dawkins & Daniel B. Williamson & Stewart W. Barr & Sally R. Lampkin, 2020. "‘What drives commuter behaviour?': a Bayesian clustering approach for understanding opposing behaviours in social surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 251-280, January.
- Marina Christofoletti & Tânia R. B. Benedetti & Felipe G. Mendes & Humberto M. Carvalho, 2021. "Using Multilevel Regression and Poststratification to Estimate Physical Activity Levels from Health Surveys," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
- Khan, Urmee & Lieli, Robert P., 2018.
"Information flow between prediction markets, polls and media: Evidence from the 2008 presidential primaries,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 696-710.
- Urmee Khan & Robert Lieli, 2016. "Information Flow Between Prediction Markets, Polls and Media: Evidence from the 2008 Presidential Primaries," Working Papers 201610, University of California at Riverside, Department of Economics.
- Urmee Khan & Robert Lieli, 2017. "Information Flow Between Prediction Markets, Polls and Media: Evidence from the 2008 Presidential Primaries," Working Papers 201711, University of California at Riverside, Department of Economics.
- Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
- Margaret Weden & Christine Peterson & Jeremy Miles & Regina Shih, 2015. "Evaluating Linearly Interpolated Intercensal Estimates of Demographic and Socioeconomic Characteristics of U.S. Counties and Census Tracts 2001–2009," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 34(4), pages 541-559, August.
- Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
- Facchini, Giovanni & Hatton, Timothy J. & Steinhardt, Max F., 2024.
"Opening Heaven’s Door: Public Opinion and Congressional Votes on the 1965 Immigration Act,"
The Journal of Economic History, Cambridge University Press, vol. 84(1), pages 232-270, March.
- Facchini, Giovanni & Hatton, Timothy J. & Steinhardt, Max F., 2021. "Opening Heaven's Door: Public Opinion and Congressional Votes on the 1965 Immigration Act," IZA Discussion Papers 14934, Institute of Labor Economics (IZA).
- Giovanni Facchini & Timothy J. Hatton & Max F. Steinhardt, 2021. "Opening Heaven's Door: Public Opinion and Congressional Votes on the 1965 Immigration Act," CEH Discussion Papers 06, Centre for Economic History, Research School of Economics, Australian National University.
- Giovanni Facchini & Timothy J. Hatton & Max F. Steinhardt, 2021. "Opening heaven’s door: Public opinion and congressional votes on the 1965 Immigration Act," Discussion Papers 2021-07, University of Nottingham, GEP.
- Caldarulo, Mattia & Mossberger, Karen & Howell, Anthony, 2023. "Community-wide broadband adoption and student academic achievement," Telecommunications Policy, Elsevier, vol. 47(1).
- Roberto Cerina & Raymond Duch, 2021. "Polling India via regression and post-stratification of non-probability online samples," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-34, November.
- Cerina, Roberto & Duch, Raymond, 2020. "Measuring public opinion via digital footprints," International Journal of Forecasting, Elsevier, vol. 36(3), pages 987-1002.
- Munzert, Simon, 2017. "Forecasting elections at the constituency level: A correction–combination procedure," International Journal of Forecasting, Elsevier, vol. 33(2), pages 467-481.
- repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
- Temporão, Mickael & Dufresne, Yannick & Savoie, Justin & Linden, Clifton van der, 2019. "Crowdsourcing the vote: New horizons in citizen forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 1-10.
- Andrew Gelman & Jessica Hullman & Christopher Wlezien & George Elliott Morris, 2020. "Information, incentives, and goals in election forecasts," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 863-880, September.
- Yonatan Ben-Shalom & Ignacio Martinez & Mariel Finucane, "undated". "Risk of Workforce Exit Due to Disability: State Differences in 2003–2016," Mathematica Policy Research Reports 8aed03744a06419dbda68be8c, Mathematica Policy Research.
- Skinner, Benjamin T. & Doyle, William R., 2024. "Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification," Economics of Education Review, Elsevier, vol. 99(C).
- Wiśniowski, Arkadiusz & Bijak, Jakub & Forster, Jonathan J. & Smith, Peter W.F., 2019. "Hierarchical model for forecasting the outcomes of binary referenda," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 90-103.
More about this item
Keywords
Non-representative polling; Multilevel regression and poststratification; Election forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:31:y:2015:i:3:p:980-991. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.