IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i1p251-280.html
   My bibliography  Save this article

‘What drives commuter behaviour?': a Bayesian clustering approach for understanding opposing behaviours in social surveys

Author

Listed:
  • Laura C. Dawkins
  • Daniel B. Williamson
  • Stewart W. Barr
  • Sally R. Lampkin

Abstract

The city of Exeter, UK, is experiencing unprecedented growth, putting pressure on traffic infrastructure. As well as traffic network management, understanding and influencing commuter behaviour is important for reducing congestion. Information about current commuter behaviour has been gathered through a large on‐line survey, and similar individuals have been grouped to explore distinct behaviour profiles to inform intervention design to reduce commuter congestion. Statistical analysis within societal applications benefit from incorporating available social scientist expert knowledge. Current clustering approaches for the analysis of social surveys assume that the number of groups and the within‐group narratives are unknown a priori. Here, however, informed by valuable expert knowledge, we develop a novel Bayesian approach for creating a clear opposing transport mode group narrative within survey respondents, simplifying communication with project partners and the general public. Our methodology establishes groups characterizing opposing behaviours based on a key multinomial survey question by constraining parts of our prior judgement within a Bayesian finite mixture model. Drivers of group membership and within‐group behavioural differences are modelled hierarchically by using further information from the survey. In applying the methodology we demonstrate how it can be used to understand the key drivers of opposing behaviours in any wider application.

Suggested Citation

  • Laura C. Dawkins & Daniel B. Williamson & Stewart W. Barr & Sally R. Lampkin, 2020. "‘What drives commuter behaviour?': a Bayesian clustering approach for understanding opposing behaviours in social surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 251-280, January.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:1:p:251-280
    DOI: 10.1111/rssa.12499
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12499
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    2. Gormley, Isobel Claire & Murphy, Thomas Brendan, 2008. "Exploring Voting Blocs Within the Irish Electorate," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1014-1027.
    3. Park, David K. & Gelman, Andrew & Bafumi, Joseph, 2004. "Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls," Political Analysis, Cambridge University Press, vol. 12(4), pages 375-385.
    4. Sylvia Frühwirth‐Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter‐Ebmer, 2012. "Labor market entry and earnings dynamics: Bayesian inference using mixtures‐of‐experts Markov chain clustering," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1116-1137, November.
    5. Michael T. Fahey & Christopher W. Thane & Gemma D. Bramwell & W. Andy Coward, 2007. "Conditional Gaussian mixture modelling for dietary pattern analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 149-166, January.
    6. Dawkins, L.C. & Williamson, D.B. & Barr, S.W. & Lampkin, S.R., 2018. "Influencing transport behaviour: A Bayesian modelling approach for segmentation of social surveys," Journal of Transport Geography, Elsevier, vol. 70(C), pages 91-103.
    7. Yair Ghitza & Andrew Gelman, 2013. "Deep Interactions with MRP: Election Turnout and Voting Patterns Among Small Electoral Subgroups," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 762-776, July.
    8. Sinae Kim & Mahlet G. Tadesse & Marina Vannucci, 2006. "Variable selection in clustering via Dirichlet process mixture models," Biometrika, Biometrika Trust, vol. 93(4), pages 877-893, December.
    9. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    10. Morrissey, Karyn & Kinderman, Peter & Pontin, Eleanor & Tai, Sara & Schwannauer, Mathias, 2016. "Web based health surveys: Using a Two Step Heckman model to examine their potential for population health analysis," Social Science & Medicine, Elsevier, vol. 163(C), pages 45-53.
    11. Paul H. Garthwaite & Shafeeqah A. Al-Awadhi & Fadlalla G. Elfadaly & David J. Jenkinson, 2013. "Prior distribution elicitation for generalized linear and piecewise-linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(1), pages 59-75, January.
    12. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    13. E. Fowlkes & R. Gnanadesikan & J. Kettenring, 1988. "Variable selection in clustering," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 205-228, September.
    14. Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
    15. Jeffrey R. Lax & Justin H. Phillips, 2009. "How Should We Estimate Public Opinion in The States?," American Journal of Political Science, John Wiley & Sons, vol. 53(1), pages 107-121, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
    2. Yonatan Ben-Shalom & Ignacio Martinez & Mariel Finucane, "undated". "Risk of Workforce Exit Due to Disability: State Differences in 2003–2016," Mathematica Policy Research Reports 8aed03744a06419dbda68be8c, Mathematica Policy Research.
    3. Christopher Claassen & Richard Traunmüller, 2020. "Improving and Validating Survey Estimates of Religious Demography Using Bayesian Multilevel Models and Poststratification," Sociological Methods & Research, , vol. 49(3), pages 603-636, August.
    4. Skinner, Benjamin T. & Doyle, William R., 2024. "Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification," Economics of Education Review, Elsevier, vol. 99(C).
    5. Cerina, Roberto & Duch, Raymond, 2020. "Measuring public opinion via digital footprints," International Journal of Forecasting, Elsevier, vol. 36(3), pages 987-1002.
    6. Marina Christofoletti & Tânia R. B. Benedetti & Felipe G. Mendes & Humberto M. Carvalho, 2021. "Using Multilevel Regression and Poststratification to Estimate Physical Activity Levels from Health Surveys," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    7. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    8. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    9. Temporão, Mickael & Dufresne, Yannick & Savoie, Justin & Linden, Clifton van der, 2019. "Crowdsourcing the vote: New horizons in citizen forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 1-10.
    10. Margaret Weden & Christine Peterson & Jeremy Miles & Regina Shih, 2015. "Evaluating Linearly Interpolated Intercensal Estimates of Demographic and Socioeconomic Characteristics of U.S. Counties and Census Tracts 2001–2009," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 34(4), pages 541-559, August.
    11. Facchini, Giovanni & Hatton, Timothy J. & Steinhardt, Max F., 2024. "Opening Heaven’s Door: Public Opinion and Congressional Votes on the 1965 Immigration Act," The Journal of Economic History, Cambridge University Press, vol. 84(1), pages 232-270, March.
    12. Anzanello, Michel J. & Fogliatto, Flavio S., 2011. "Selecting the best clustering variables for grouping mass-customized products involving workers' learning," International Journal of Production Economics, Elsevier, vol. 130(2), pages 268-276, April.
    13. Caldarulo, Mattia & Mossberger, Karen & Howell, Anthony, 2023. "Community-wide broadband adoption and student academic achievement," Telecommunications Policy, Elsevier, vol. 47(1).
    14. Krzanowski, Wojtek J. & Hand, David J., 2009. "A simple method for screening variables before clustering microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2747-2753, May.
    15. Hosack, Geoffrey R. & Hayes, Keith R. & Barry, Simon C., 2017. "Prior elicitation for Bayesian generalised linear models with application to risk control option assessment," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 351-361.
    16. Roberto Cerina & Raymond Duch, 2021. "Polling India via regression and post-stratification of non-probability online samples," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-34, November.
    17. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    18. Crook Oliver M. & Gatto Laurent & Kirk Paul D. W., 2019. "Fast approximate inference for variable selection in Dirichlet process mixtures, with an application to pan-cancer proteomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-20, December.
    19. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    20. Montalvo, José G. & Papaspiliopoulos, Omiros & Stumpf-Fétizon, Timothée, 2019. "Bayesian forecasting of electoral outcomes with new parties’ competition," European Journal of Political Economy, Elsevier, vol. 59(C), pages 52-70.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:1:p:251-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.