IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v3y2018i4p57-d186976.html
   My bibliography  Save this article

Television Rating Control in the Multichannel Environment Using Trend Fuzzy Knowledge Bases and Monitoring Results

Author

Listed:
  • Olexiy Azarov

    (Computer Facilities Department, Vinnytsia National Technical University, 95, Khmelnitske sh., 21021 Vinnytsia, Ukraine)

  • Leonid Krupelnitsky

    (Computer Facilities Department, Vinnytsia National Technical University, 95, Khmelnitske sh., 21021 Vinnytsia, Ukraine)

  • Hanna Rakytyanska

    (Soft Ware Design Department, Vinnytsia National Technical University, 95, Khmelnitske sh., 21021 Vinnytsia, Ukraine)

Abstract

The purpose of this study is to control the ratio of programs of different genres when forming the broadcast grid in order to increase and maintain the rating of a channel. In the multichannel environment, television rating controls consist of selecting content, the ratings of which are completely restored after advertising. The hybrid approach to rule set refinement based on fuzzy relational calculus simplifies the process of expert recommendation systems construction. By analogy with the problem of the inverted pendulum control, the managerial actions aim to retain the balance between the fuzzy demand and supply. The increase or decrease trends of the demand and supply are described by primary fuzzy relations. The rule-based solutions of fuzzy relational equations connect significance measures of the primary fuzzy terms. Program set refinement by solving fuzzy relational equations allows avoiding procedures of content-based selective filtering. The solution set generation corresponds to the granulation of television time, where each solution represents the time slot and the granulated rating of the content. In automated media planning, generation of the weekly TV program in the form of the granular solution provides the decrease of time needed for the programming of the channel broadcast grid.

Suggested Citation

  • Olexiy Azarov & Leonid Krupelnitsky & Hanna Rakytyanska, 2018. "Television Rating Control in the Multichannel Environment Using Trend Fuzzy Knowledge Bases and Monitoring Results," Data, MDPI, vol. 3(4), pages 1-21, December.
  • Handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:57-:d:186976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/3/4/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/3/4/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Mingyan & Zeng, An & Cui, Xiaohua, 2022. "Collective user switching behavior reveals the influence of TV channels and their hidden community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    2. Giwoong Bae & Hye-jin Kim, 2022. "The impact of online video highlights on TV audience ratings," Electronic Commerce Research, Springer, vol. 22(2), pages 405-425, June.
    3. José Antonio Carbajal & Wes Chaar, 2017. "Turner Optimizes the Allocation of Audience Deficiency Units," Interfaces, INFORMS, vol. 47(6), pages 518-536, December.
    4. Keita Kinjo & Shinya Sugawara, 2014. "An Empirical Analysis for a Case-based Decision to Watch Japanese TV dramas," CIRJE F-Series CIRJE-F-940, CIRJE, Faculty of Economics, University of Tokyo.
    5. José Antonio Carbajal & Peter Williams & Andreea Popescu & Wes Chaar, 2019. "Turner Blazes a Trail for Audience Targeting on Television with Operations Research and Advanced Analytics," Interfaces, INFORMS, vol. 49(1), pages 64-89, January.
    6. Mayukh Dass & Masoud Moradi & Fereshteh Zihagh, 2023. "Forecasting purchase rates of new products introduced in existing categories," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 385-408, September.
    7. Aiste Ruseckaite & Dennis Fok & Peter Goos, 2016. "Flexible Mixture-Amount Models for Business and Industry using Gaussian Processes," Tinbergen Institute Discussion Papers 16-075/III, Tinbergen Institute.
    8. Danaher, Peter & Dagger, Tracey, 2012. "Using a nested logit model to forecast television ratings," International Journal of Forecasting, Elsevier, vol. 28(3), pages 607-622.
    9. Song, Lianlian & Shi, Yang & Tso, Geoffrey Kwok Fai & Lo, Hing Po, 2021. "Forecasting week-to-week television ratings using reduced-form and structural dynamic models," International Journal of Forecasting, Elsevier, vol. 37(1), pages 302-321.
    10. Van Reeth, Daam, 2019. "Forecasting Tour de France TV audiences: A multi-country analysis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 810-821.
    11. Alexandra Mello Schmidt & Dani Gamerman & Ajax Moreira, 1999. "An adaptive resampling scheme for cycle estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(5), pages 619-641.
    12. Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
    13. David A. Schweidel & Natasha Zhang Foutz & Robin J. Tanner, 2014. "Synergy or Interference: The Effect of Product Placement on Commercial Break Audience Decline," Marketing Science, INFORMS, vol. 33(6), pages 763-780, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:57-:d:186976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.