IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v21y2006i2p231-250.html
   My bibliography  Save this article

Dynamic clustering for interval data based on L 2 distance

Author

Listed:
  • Francisco Carvalho
  • Paula Brito
  • Hans-Hermann Bock

Abstract

No abstract is available for this item.

Suggested Citation

  • Francisco Carvalho & Paula Brito & Hans-Hermann Bock, 2006. "Dynamic clustering for interval data based on L 2 distance," Computational Statistics, Springer, vol. 21(2), pages 231-250, June.
  • Handle: RePEc:spr:compst:v:21:y:2006:i:2:p:231-250
    DOI: 10.1007/s00180-006-0261-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-006-0261-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-006-0261-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    2. M. Rosário Oliveira & Margarida Azeitona & António Pacheco & Rui Valadas, 2022. "Association measures for interval variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 491-520, September.
    3. Áurea Sousa & Osvaldo Silva & Leonor Bacelar-Nicolau & João Cabral & Helena Bacelar-Nicolau, 2023. "Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data," Stats, MDPI, vol. 6(4), pages 1-13, October.
    4. Guo, Junpeng & Li, Wenhua & Li, Chenhua & Gao, Sa, 2012. "Standardization of interval symbolic data based on the empirical descriptive statistics," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 602-610.
    5. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    6. Nataša Kejžar & Simona Korenjak-Černe & Vladimir Batagelj, 2021. "Clustering of modal-valued symbolic data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 513-541, June.
    7. Andrzej Młodak, 2011. "Classification of Multivariate Objects Using Interval Quantile Classes," Journal of Classification, Springer;The Classification Society, vol. 28(3), pages 327-362, October.
    8. Ana Belén Ramos-Guajardo, 2022. "A hierarchical clustering method for random intervals based on a similarity measure," Computational Statistics, Springer, vol. 37(1), pages 229-261, March.
    9. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    10. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:21:y:2006:i:2:p:231-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.