IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v16y2000i4p433-436.html
   My bibliography  Save this article

The M3-Competition1

Author

Listed:
  • Ord, Keith
  • Hibon, Michele
  • Makridakis, Spyros

Abstract

No abstract is available for this item.

Suggested Citation

  • Ord, Keith & Hibon, Michele & Makridakis, Spyros, 2000. "The M3-Competition1," International Journal of Forecasting, Elsevier, vol. 16(4), pages 433-436.
  • Handle: RePEc:eee:intfor:v:16:y:2000:i:4:p:433-436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(00)00078-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    2. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    3. Meese, Richard & Geweke, John, 1984. "A Comparison of Autoregressive Univariate Forecasting Procedures for Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 191-200, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davis, Lauren B. & Jiang, Steven X. & Morgan, Shona D. & Nuamah, Isaac A. & Terry, Jessica R., 2016. "Analysis and prediction of food donation behavior for a domestic hunger relief organization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 26-37.
    2. Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004. "Exponential smoothing models: Means and variances for lead-time demand," European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.
    3. Proietti, Tommaso, 2003. "Forecasting the US unemployment rate," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 451-476, March.
    4. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    5. Ozer Ozdemir & Memmedaga Memmedli & Akhlitdin Nizamitdinov, 2013. "ANN Models and Bayesian Spline Models for Analysis of Exchange Rates and Gold Price," International Econometric Review (IER), Econometric Research Association, vol. 5(2), pages 53-69, September.
    6. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    7. Dekker, Mark & van Donselaar, Karel & Ouwehand, Pim, 2004. "How to use aggregation and combined forecasting to improve seasonal demand forecasts," International Journal of Production Economics, Elsevier, vol. 90(2), pages 151-167, July.
    8. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
    9. J V Hansen & J B McDonald & R D Nelson, 2006. "Some evidence on forecasting time-series with support vector machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1053-1063, September.
    10. Ord, Keith, 2004. "Charles Holt's report on exponentially weighted moving averages: an introduction and appreciation," International Journal of Forecasting, Elsevier, vol. 20(1), pages 1-3.
    11. Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    2. Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
    3. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    4. Assimakopoulos, V. & Nikolopoulos, K., 2000. "The theta model: a decomposition approach to forecasting," International Journal of Forecasting, Elsevier, vol. 16(4), pages 521-530.
    5. Welch, Eric & Bretschneider, Stuart & Rohrbaugh, John, 1998. "Accuracy of judgmental extrapolation of time series data: Characteristics, causes, and remediation strategies for forecasting," International Journal of Forecasting, Elsevier, vol. 14(1), pages 95-110, March.
    6. Robert Fildes & Gary Madden & Joachim Tan, 2007. "Optimal forecasting model selection and data characteristics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(15), pages 1251-1264.
    7. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    8. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    9. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    10. Gardner Jr., Everette S. & Diaz-Saiz, Joaquin, 2008. "Exponential smoothing in the telecommunications data," International Journal of Forecasting, Elsevier, vol. 24(1), pages 170-174.
    11. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    12. Madden, Gary & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
    13. Armstrong, J. Scott & Collopy, Fred & Yokum, J. Thomas, 2005. "Decomposition by causal forces: a procedure for forecasting complex time series," International Journal of Forecasting, Elsevier, vol. 21(1), pages 25-36.
    14. Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
    15. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    16. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    17. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    18. Mohamed Gaber & Edward J. Lusk, 2019. "A Vetting Protocol for the Analytical Procedures Platform for the AP-Phase of PCAOB Audits," Accounting and Finance Research, Sciedu Press, vol. 8(4), pages 1-43, November.
    19. Edward J. Lusk, 2019. "Time Series Forecasting in Stock Trading Markets: The Turning Point Curiosity," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(4), pages 01-16, July.
    20. Massimiliano Marcellino, "undated". "Forecast pooling for short time series of macroeconomic variables," Working Papers 212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. John Galt Solutions, Inc. in Wikipedia English

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:16:y:2000:i:4:p:433-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.