IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v97y2021icp1-6.html
   My bibliography  Save this article

Precise large deviations of aggregate claims with arbitrary dependence between claim sizes and waiting times

Author

Listed:
  • Chen, Yiqing
  • White, Toby
  • Yuen, Kam Chuen

Abstract

Consider a renewal risk model in which claim sizes and interarrival times correspondingly form a sequence of independent, identically distributed, and nonnegative random pairs with a generic pair (X,θ). Chen and Yuen (2012) studied precise large deviations of aggregate claims in this model under the assumption that (X,θ) obeys a dependence structure described via a stochastic boundedness condition on the waiting time θ for a large claim X. That assumption unfortunately leads to asymptotic independence between X and θ and hence considerably limits the usefulness of the result obtained there. In this short paper, we make an effort to avoid that assumption by allowing X and θ to be arbitrarily dependent. As by-products, we propose two novel applications of the main result, one to pricing insurance futures and the other to approximating both the value at risk and expected shortfall of aggregate claims.

Suggested Citation

  • Chen, Yiqing & White, Toby & Yuen, Kam Chuen, 2021. "Precise large deviations of aggregate claims with arbitrary dependence between claim sizes and waiting times," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 1-6.
  • Handle: RePEc:eee:insuma:v:97:y:2021:i:c:p:1-6
    DOI: 10.1016/j.insmatheco.2020.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720301657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Wenge, 2017. "Wanting robustness in insurance: A model of catastrophe risk pricing and its empirical test," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 14-23.
    2. Asimit, Alexandru V. & Li, Jinzhu, 2018. "Systemic Risk: An Asymptotic Evaluation," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 673-698, May.
    3. Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
    4. Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
    5. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    6. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    7. Cossette, Hélène & Marceau, Etienne & Marri, Fouad, 2008. "On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 444-455, December.
    8. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Qingwu & Lin, Jia’nan & Liu, Xijun, 2023. "Large deviations of aggregate amount of claims in compound risk model with arbitrary dependence between claim sizes and waiting times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    2. Yuan, Meng & Lu, Dawei, 2022. "Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure," Statistics & Probability Letters, Elsevier, vol. 185(C).
    3. Fu, Ke-Ang & Liu, Yang & Wang, Jiangfeng, 2022. "Precise large deviations in a bidimensional risk model with arbitrary dependence between claim-size vectors and waiting times," Statistics & Probability Letters, Elsevier, vol. 184(C).
    4. Jinyu Zhou & Jigao Yan & Dongya Cheng, 2024. "Strong consistency of tail value-at-risk estimator and corresponding general results under widely orthant dependent samples," Statistical Papers, Springer, vol. 65(6), pages 3357-3394, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Meng & Lu, Dawei, 2022. "Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure," Statistics & Probability Letters, Elsevier, vol. 185(C).
    2. Gao, Qingwu & Lin, Jia’nan & Liu, Xijun, 2023. "Large deviations of aggregate amount of claims in compound risk model with arbitrary dependence between claim sizes and waiting times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    3. Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
    4. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    5. Franck Adékambi & Essodina Takouda, 2022. "On the Discounted Penalty Function in a Perturbed Erlang Renewal Risk Model With Dependence," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 481-513, June.
    6. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    7. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    8. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    9. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    10. Yang Yang & Shuang Liu & Kam Chuen Yuen, 2022. "Second-Order Tail Behavior for Stochastic Discounted Value of Aggregate Net Losses in a Discrete-Time Risk Model," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2600-2621, December.
    11. Li, Rong & Bi, Xiuchun & Zhang, Shuguang, 2020. "Large deviations for sums of claims in a general renewal risk model with the regression dependent structure," Statistics & Probability Letters, Elsevier, vol. 165(C).
    12. Fu, Ke-Ang & Liu, Yang & Wang, Jiangfeng, 2022. "Precise large deviations in a bidimensional risk model with arbitrary dependence between claim-size vectors and waiting times," Statistics & Probability Letters, Elsevier, vol. 184(C).
    13. Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
    14. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    15. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    16. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    17. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    18. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    19. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    20. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:97:y:2021:i:c:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.