Precise large deviations in a bidimensional risk model with arbitrary dependence between claim-size vectors and waiting times
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2022.109365
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
- Kaiyong Wang & Yuebao Wang & Qingwu Gao, 2013. "Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 109-124, March.
- Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
- Chen, Yiqing & White, Toby & Yuen, Kam Chuen, 2021. "Precise large deviations of aggregate claims with arbitrary dependence between claim sizes and waiting times," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 1-6.
- Chen, Yiqing & Yuen, Kam C., 2012. "Precise large deviations of aggregate claims in a size-dependent renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 457-461.
- Li, Rong & Bi, Xiuchun & Zhang, Shuguang, 2020. "Large deviations for sums of claims in a general renewal risk model with the regression dependent structure," Statistics & Probability Letters, Elsevier, vol. 165(C).
- Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
- Xinmei Shen & Hailan Tian, 2016. "Precise large deviations for sums of two-dimensional random vectors with dependent components of heavy tails," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(21), pages 6357-6368, November.
- Cossette, Hélène & Marceau, Etienne & Marri, Fouad, 2008. "On the compound Poisson risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 444-455, December.
- Lu, Dawei, 2012. "Lower bounds of large deviation for sums of long-tailed claims in a multi-risk model," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1242-1250.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Qingwu & Liu, Xijun, 2013. "Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1527-1538.
- Yuan, Meng & Lu, Dawei, 2022. "Precise large deviation for sums of sub-exponential claims with the m-dependent semi-Markov type structure," Statistics & Probability Letters, Elsevier, vol. 185(C).
- Gao, Qingwu & Lin, Jia’nan & Liu, Xijun, 2023. "Large deviations of aggregate amount of claims in compound risk model with arbitrary dependence between claim sizes and waiting times," Statistics & Probability Letters, Elsevier, vol. 197(C).
- Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
- Yang, Yang & Ignatavičiūtė, Eglė & Šiaulys, Jonas, 2015. "Conditional tail expectation of randomly weighted sums with heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 20-28.
- Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
- Li, Rong & Bi, Xiuchun & Zhang, Shuguang, 2020. "Large deviations for sums of claims in a general renewal risk model with the regression dependent structure," Statistics & Probability Letters, Elsevier, vol. 165(C).
- Sun, Ying & Wei, Li, 2014. "The finite-time ruin probability with heavy-tailed and dependent insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 178-183.
- Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
- Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
- Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
- Yang, Yang & Hashorva, Enkelejd, 2013. "Extremes and products of multivariate AC-product risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 312-319.
- Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
- Chen, Yu & Zhang, Weiping, 2007. "Large deviations for random sums of negatively dependent random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 530-538, March.
- Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
- Yang, Yang & Leipus, Remigijus & Šiaulys, Jonas, 2012. "Tail probability of randomly weighted sums of subexponential random variables under a dependence structure," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1727-1736.
- Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
- Kaiyong Wang & Yuebao Wang & Qingwu Gao, 2013. "Uniform Asymptotics for the Finite-Time Ruin Probability of a Dependent Risk Model with a Constant Interest Rate," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 109-124, March.
- Shen, Xinmei & Xu, Menghao & Mills, Ebenezer Fiifi Emire Atta, 2016. "Precise large deviation results for sums of sub-exponential claims in a size-dependent renewal risk model," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 6-13.
- Xin-mei Shen & Zheng-yan Lin & Yi Zhang, 2009. "Uniform Estimate for Maximum of Randomly Weighted Sums with Applications to Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 669-685, December.
More about this item
Keywords
Arbitrary dependence; Bidimensional risk model; Dominated variation; Large deviation; Non-stationary arrival;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.