IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v15y1985i01p1-17_00.html
   My bibliography  Save this article

An Evolutionary Credibility Model for Claim Numbers

Author

Listed:
  • Albrecht, Peter

Abstract

This paper considers a particular credibility model for the claim numbers N1, N2, …, Nn, … of a single risk within a collective in successive periods 1, 2, …, n, … In the terminology of Jewell (1975) the model is an evolutionary credibility model, which means that the underlying risk parameter Λ is allowed to vary in successive periods (the structure function is allowed to be time dependent). Evolutionary credibility models for claim amounts have been studied by Bühlmann (1969, pp. 164–165), Gerber and Jones (1975), Jewell (1975, 1976), Taylor (1975), Sundt (1979, 1981, 1983) and Kremer (1982). Again in Jewell's terminology the considered model is on the other hand stationary, in the sense that the conditional distribution of Ni given the underlying risk parameter does not vary with i.The computation of the credibility estimate of Nn+1 involves the considerable labor of inverting an n × n covariance matrix (n is the number of observations). The above mentioned papers have therefore typically looked for model structures for which this inversion is unnecessary and instead a recursive formula for the credibility forecast can be obtained. Typically nth order stationary a priori sequences (e.g., ARMA (p, q)-processes) lead to an nth order recursive scheme. In this paper we impose the restriction that the conditional distribution of Ni is Poisson (which by the way leads to a model identical to the so called “doubly stochastic Poisson sequences” considered in the theory of stochastic point processes). What we gain is a recursive formula for the coefficients of the credibility estimate (not for the estimate itself!) in case of an arbitrary weakly stationary a priori sequence. In addition to this central result the estimation of the structural parameters is considered in this case and some more special models are analyzed. Among them are EARMA-processes (which are positive-valued stationary sequences possessing exponentially distributed marginals and the same autocorrelation structure as ARMA-processes) as a priori sequence and models which can be considered as (discrete) generalizations of the Pólya process.

Suggested Citation

  • Albrecht, Peter, 1985. "An Evolutionary Credibility Model for Claim Numbers," ASTIN Bulletin, Cambridge University Press, vol. 15(1), pages 1-17, April.
  • Handle: RePEc:cup:astinb:v:15:y:1985:i:01:p:1-17_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100005031/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    2. Chen, Yongzhao & Cheung, Ka Chun & Choi, Hugo Ming Cheung & Yam, Sheung Chi Phillip, 2020. "Evolutionary credibility risk premium," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 216-229.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:15:y:1985:i:01:p:1-17_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.