IDEAS home Printed from https://ideas.repec.org/a/pes/ierequ/v17y2022i3p803-842.html
   My bibliography  Save this article

Segmentation and estimation of claim severity in motor third-party liability insurance through contrast analysis

Author

Listed:
  • Marian Reiff

    (University of Economics, Slovakia)

  • Erik Šoltés

    (University of Economics, Slovakia)

  • Silvia Komara

    (University of Economics, Slovakia)

  • Tatiana Šoltésová

    (University of Economics, Slovakia)

  • Silvia Zelinová

    (University of Economics, Slovakia)

Abstract

Research background: Using the marginal means and contrast analysis of the target variable, e.g., claim severity (CS), the actuary can perform an in-depth analysis of the portfolio and fully use the general linear models potential. These analyses are mainly used in natural sciences, medicine, and psychology, but so far, it has not been given adequate attention in the actuarial field. Purpose of the article: The article's primary purpose is to point out the possibilities of contrast analysis for the segmentation of policyholders and estimation of CS in motor third-party liability insurance. The article focuses on using contrast analysis to redefine individual relevant factors to ensure the segmentation of policyholders in terms of actuarial fairness and statistical correctness. The aim of the article is also to reveal the possibilities of using contrast analysis for adequate segmentation in case of interaction of factors and the subsequent estimation of CS. Methods: The article uses the general linear model and associated least squares means. Contrast analysis is being implemented through testing and estimating linear combinations of model parameters. Equations of estimable functions reveal how to interpret the results correctly. Findings & value added: The article shows that contrast analysis is a valuable tool for segmenting policyholders in motor insurance. The segmentation's validity is statistically verifiable and is well applicable to the main effects. Suppose the significance of cross effects is proved during segmentation. In that case, the actuary must take into account the risk that even if the partial segmentation factors are set adequately, statistically proven, this may not apply to the interaction of these factors. The article also provides a procedure for segmentation in case of interaction of factors and the procedure for estimation of the segment's CS. Empirical research has shown that CS is significantly influenced by weight, engine power, age and brand of the car, policyholder's age, and district. The pattern of age's influence on CS differs in different categories of car brands. The significantly highest CS was revealed in the youngest age category and the category of luxury car brands.

Suggested Citation

  • Marian Reiff & Erik Šoltés & Silvia Komara & Tatiana Šoltésová & Silvia Zelinová, 2022. "Segmentation and estimation of claim severity in motor third-party liability insurance through contrast analysis," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 803-842, September.
  • Handle: RePEc:pes:ierequ:v:17:y:2022:i:3:p:803-842
    DOI: 10.24136/eq.2022.028
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.24136/eq.2022.028
    Download Restriction: no

    File URL: https://libkey.io/10.24136/eq.2022.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aivars Spilbergs & Andris Fomins & Māris Krastiņš, 2022. "Multivariate Modelling of Motor Third Party Liability Insurance Claims," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 8(1), pages 5-18.
    2. Jose Antonio Ordaz & Maria del Carmen Melgar & M. Kazim Khan, 2011. "An Analysis Of Spanish Accidents In Automobile Insurance: The Use Of The Probit Model And Theoretical Potential Of Other Econometric Tools," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 6(3), pages 117-134, September.
    3. Lenth, Russell V., 2016. "Least-Squares Means: The R Package lsmeans," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i01).
    4. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, October.
    5. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    6. Roel Henckaerts & Marie-Pier Côté & Katrien Antonio & Roel Verbelen, 2021. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 255-285, April.
    7. Xiaoshan Su & Manying Bai, 2020. "Stochastic gradient boosting frequency-severity model of insurance claims," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    8. Esther Herberich & Johannes Sikorski & Torsten Hothorn, 2010. "A Robust Procedure for Comparing Multiple Means under Heteroscedasticity in Unbalanced Designs," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    9. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    10. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    11. Dewi Rahardja, 2020. "Multiple Comparison Procedures for the Differences of Proportion Parameters in Over-Reported Multiple-Sample Binomial Data," Stats, MDPI, vol. 3(1), pages 1-12, March.
    12. Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2021. "A New Class of Severity Regression Models with an Application to IBNR Prediction," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 206-231, April.
    13. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    14. Henckaerts, Roel & Antonio, Katrien, 2022. "The added value of dynamically updating motor insurance prices with telematics collected driving behavior data," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 79-95.
    15. Lynn Roy LaMotte, 2020. "A formula for Type III sums of squares," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(13), pages 3126-3136, July.
    16. Westfall, Peter H. & Tobias, Randall D., 2007. "Multiple Testing of General Contrasts: Truncated Closure and the Extended ShafferRoyen Method," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 487-494, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šoltés Erik & Zelinová Silvia & Bilíková Mária, 2019. "General Linear Model: An Effective Tool For Analysis Of Claim Severity In Motor Third Party Liability Insurance," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 13-31, December.
    2. Erik Šoltés & Silvia Zelinová & Mária Bilíková, 2019. "General Linear Model: An Effective Tool For Analysis Of Claim Severity In Motor Third Party Liability Insurance," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 13-31, December.
    3. Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
    4. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    5. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    6. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    7. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    8. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    9. Dong-Young Lim, 2021. "A Neural Frequency-Severity Model and Its Application to Insurance Claims," Papers 2106.10770, arXiv.org, revised Feb 2024.
    10. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    11. Kaiwen Wang & Jiehui Ding & Kristen R. Lidwell & Scott Manski & Gee Y. Lee & Emilio Xavier Esposito, 2019. "Treatment Level and Store Level Analyses of Healthcare Data," Risks, MDPI, vol. 7(2), pages 1-22, April.
    12. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    13. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    14. Freek Holvoet & Katrien Antonio & Roel Henckaerts, 2023. "Neural networks for insurance pricing with frequency and severity data: a benchmark study from data preprocessing to technical tariff," Papers 2310.12671, arXiv.org, revised Aug 2024.
    15. Oh, Rosy & Lee, Kyung Suk & Park, Sojung C. & Ahn, Jae Youn, 2020. "Double-counting problem of the bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 141-155.
    16. Fung, Tsz Chai & Badescu, Andrei L. & Lin, X. Sheldon, 2019. "A class of mixture of experts models for general insurance: Theoretical developments," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 111-127.
    17. Tingting Chen & Anthony Francis Desmond & Peter Adamic, 2023. "Generalized Additive Modelling of Dependent Frequency and Severity Distributions for Aggregate Claims," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 12(4), pages 1-1.
    18. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
    19. Zuleyka Díaz Martínez & José Fernández Menéndez & Luis Javier García Villalba, 2023. "Tariff Analysis in Automobile Insurance: Is It Time to Switch from Generalized Linear Models to Generalized Additive Models?," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    20. Gómez-Déniz, E., 2016. "Bivariate credibility bonus–malus premiums distinguishing between two types of claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 117-124.

    More about this item

    Keywords

    general linear model; claim severity; motor third party liability insurance; least squares means; contrast analysis;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pes:ierequ:v:17:y:2022:i:3:p:803-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam P. Balcerzak (email available below). General contact details of provider: https://edirc.repec.org/data/ibgtopl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.