IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v79y2018icp92-100.html
   My bibliography  Save this article

An approximation method for risk aggregations and capital allocation rules based on additive risk factor models

Author

Listed:
  • Zhou, Ming
  • Dhaene, Jan
  • Yao, Jing

Abstract

This paper proposes the use of convex lower bounds as approximation to evaluate the aggregation of risks, based on additive risk factor models in the multivariate generalized Gamma distribution context. We consider two types of additive risk factor model. In Model 1, the risk factors that contribute to the aggregation are deterministic. In Model 2, we consider contingent risk factors. We work out the explicit formulae of the convex lower bounds, by which we propose an analytical approximate capital allocation rule based on the conditional tail expectation. We conduct stress tests to show that our method is robust across various dependence structures.

Suggested Citation

  • Zhou, Ming & Dhaene, Jan & Yao, Jing, 2018. "An approximation method for risk aggregations and capital allocation rules based on additive risk factor models," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 92-100.
  • Handle: RePEc:eee:insuma:v:79:y:2018:i:c:p:92-100
    DOI: 10.1016/j.insmatheco.2018.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668717303931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
    2. Mathai, A. M. & Moschopoulos, P. G., 1991. "On a multivariate gamma," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 135-153, October.
    3. A. Mathal & P. Moschopoulos, 1992. "A form of multivariate gamma distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 97-106, March.
    4. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    5. Alai, Daniel H. & Landsman, Zinoviy & Sherris, Michael, 2013. "Lifetime dependence modelling using a truncated multivariate gamma distribution," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 542-549.
    6. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    7. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    8. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    9. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    10. Furman, Edward, 2008. "On a multivariate gamma distribution," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2353-2360, October.
    11. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    12. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    13. Deelstra, Griselda & Rayée, Grégory & Vanduffel, Steven & Yao, Jing, 2014. "Using Model-Independent Lower Bounds To Improve Pricing Of Asian Style Options In Lévy Markets," ASTIN Bulletin, Cambridge University Press, vol. 44(2), pages 237-276, May.
    14. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    15. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    2. Zhao, Jun & Jang, Yu-Hyeong & Kim, Hyoung-Moon, 2022. "Closed-form and bias-corrected estimators for the bivariate gamma distribution," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    3. Ling, Chengxiu, 2019. "Asymptotics of multivariate conditional risk measures for Gaussian risks," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 205-215.
    4. Andrew Fleck & Edward Furman & Yang Shen, 2024. "Stochastic Loss Reserving: Dependence and Estimation," Papers 2410.14985, arXiv.org.
    5. Vadim Semenikhine & Edward Furman & Jianxi Su, 2018. "On a Multiplicative Multivariate Gamma Distribution with Applications in Insurance," Risks, MDPI, vol. 6(3), pages 1-20, August.
    6. Shushi, Tomer & Yao, Jing, 2020. "Multivariate risk measures based on conditional expectation and systemic risk for Exponential Dispersion Models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 178-186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    2. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    3. Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.
    4. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    5. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    6. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    7. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    8. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    9. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    10. Gareth W. Peters & Rodrigo S. Targino & Mario V. Wüthrich, 2017. "Bayesian Modelling, Monte Carlo Sampling and Capital Allocation of Insurance Risks," Risks, MDPI, vol. 5(4), pages 1-51, September.
    11. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    12. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    13. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    14. Denuit, Michel & Robert, Christian Y., 2020. "From risk sharing to risk transfer: the analytics of collaborative insurance," LIDAM Discussion Papers ISBA 2020017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    16. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
    17. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    18. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    19. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    20. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:79:y:2018:i:c:p:92-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.