IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i3p79-d163347.html
   My bibliography  Save this article

On a Multiplicative Multivariate Gamma Distribution with Applications in Insurance

Author

Listed:
  • Vadim Semenikhine

    (Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada)

  • Edward Furman

    (Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada)

  • Jianxi Su

    (Department of Statistics, Purdue University, West Lafayette, IN 47906, USA)

Abstract

One way to formulate a multivariate probability distribution with dependent univariate margins distributed gamma is by using the closure under convolutions property. This direction yields an additive background risk model, and it has been very well-studied. An alternative way to accomplish the same task is via an application of the Bernstein–Widder theorem with respect to a shifted inverse Beta probability density function. This way, which leads to an arguably equally popular multiplicative background risk model (MBRM), has been by far less investigated. In this paper, we reintroduce the multiplicative multivariate gamma (MMG) distribution in the most general form, and we explore its various properties thoroughly. Specifically, we study the links to the MBRM, employ the machinery of divided differences to derive the distribution of the aggregate risk random variable explicitly, look into the corresponding copula function and the measures of nonlinear correlation associated with it, and, last but not least, determine the measures of maximal tail dependence. Our main message is that the MMG distribution is (1) very intuitive and easy to communicate, (2) remarkably tractable, and (3) possesses rich dependence and tail dependence characteristics. Hence, the MMG distribution should be given serious considerations when modelling dependent risks.

Suggested Citation

  • Vadim Semenikhine & Edward Furman & Jianxi Su, 2018. "On a Multiplicative Multivariate Gamma Distribution with Applications in Insurance," Risks, MDPI, vol. 6(3), pages 1-20, August.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:79-:d:163347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/3/79/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/3/79/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Zhou, Ming & Dhaene, Jan & Yao, Jing, 2018. "An approximation method for risk aggregations and capital allocation rules based on additive risk factor models," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 92-100.
    3. Günter Franke & Harris Schlesinger & Richard C. Stapleton, 2006. "Multiplicative Background Risk," Management Science, INFORMS, vol. 52(1), pages 146-153, January.
    4. Balakrishnan, Narayanaswamy & Ristić, Miroslav M., 2016. "Multivariate families of gamma-generated distributions with finite or infinite support above or below the diagonal," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 194-207.
    5. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    6. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.
    7. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    8. Alexandru V. Asimit & Raluca Vernic & Ricardas Zitikis, 2016. "Background Risk Models and Stepwise Portfolio Construction," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 805-827, September.
    9. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2018. "Aggregation Of Dependent Risks In Mixtures Of Exponential Distributions And Extensions," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1079-1107, September.
    10. Embrechts, Paul & Hofert, Marius, 2013. "Statistical Inference For Copulas In High Dimensions: A Simulation Study," ASTIN Bulletin, Cambridge University Press, vol. 43(2), pages 81-95, May.
    11. Gollier, Christian & Pratt, John W, 1996. "Risk Vulnerability and the Tempering Effect of Background Risk," Econometrica, Econometric Society, vol. 64(5), pages 1109-1123, September.
    12. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    13. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    14. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    15. Harald Dornheim & Vytaras Brazauskas, 2007. "Robust and Efficient Methods for Credibility When Claims Are Approximately Gamma-Distributed," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 138-158.
    16. Furman, Edward & Su, Jianxi & Zitikis, Ričardas, 2015. "Paths And Indices Of Maximal Tail Dependence," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 661-678, September.
    17. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    2. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Statistical detection and classification of background risks affecting inputs and outputs," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 1-18, April.
    3. Nadezhda Gribkova & Ričardas Zitikis, 2018. "A User-Friendly Algorithm for Detecting the Influence of Background Risks on a Model," Risks, MDPI, vol. 6(3), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    2. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    3. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    4. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    5. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    6. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    7. Martín Egozcue & Jiang Wu & Ričardas Zitikis, 2017. "Optimal two-stage pricing strategies from the seller’s perspective under the uncertainty of buyer’s decisions," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-25, December.
    8. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    9. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    10. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    11. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    12. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.
    13. Marri, Fouad & Moutanabbir, Khouzeima, 2022. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 75-90.
    14. Zubanov, Nick & Cadsby, Bram & Song, Fei, 2017. "The," IZA Discussion Papers 10542, Institute of Labor Economics (IZA).
    15. Daniel Harenberg & Alexander Ludwig, "undated". "Social Security and the Interactions Between Aggregate and Idiosyncratic Risk," Working Papers ETH-RC-14-002, ETH Zurich, Chair of Systems Design.
    16. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    17. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    18. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Huang, James, 2014. "Convex and decreasing absolute risk aversion is proper," Economics Letters, Elsevier, vol. 125(1), pages 123-125.
    20. Broll, Udo & Wong, Keith K.P., 2010. "The firm under uncertainty: capital structure and background risk," Dresden Discussion Paper Series in Economics 04/10, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:79-:d:163347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.