IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v49y2011i3p512-519.html
   My bibliography  Save this article

A new look at the homogeneous risk model

Author

Listed:
  • Lefèvre, Claude
  • Picard, Philippe

Abstract

The present paper aims to revisit the homogeneous risk model investigated by De Vylder and Goovaerts (1999, 2000). First, a claim arrival process is defined on a fixed time interval by assuming that the arrival times satisfy an order statistic property. Then, the variability and the covariance of an aggregate claim amount process is discussed. The distribution of the aggregate discounted claims is also examined. Finally, a closed-form expression for the non-ruin probability is derived in terms of a family of Appell polynomials. This formula holds for all claim distributions, even dependent. It generalizes several results obtained so far.

Suggested Citation

  • Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
  • Handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:512-519
    DOI: 10.1016/j.insmatheco.2011.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711000862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2011.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Kozubowski, Tomasz J., 2008. "A class of weighted Poisson processes," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2346-2352, October.
    2. De Vylder, F. E. & Goovaerts, M. J., 1999. "Inequality extensions of Prabhu's formula in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 249-271, May.
    3. Bargès, Mathieu & Cossette, Hélène & Loisel, Stéphane & Marceau, Étienne, 2011. "On the Moments of Aggregate Discounted Claims with Dependence Introduced by a FGM Copula," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 215-238, May.
    4. Stéphane Loisel & Claude Lefèvre, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Post-Print hal-00201377, HAL.
    5. Claude Lefèvre & Stéphane Loisel, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 425-441, September.
    6. Dimitrova, Dimitrina S. & Kaishev, Vladimir K., 2010. "Optimal joint survival reinsurance: An efficient frontier approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 27-35, August.
    7. Ignatov, Zvetan G. & Kaishev, Vladimir K. & Krachunov, Rossen S., 2001. "An improved finite-time ruin probability formula and its Mathematica implementation," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 375-386, December.
    8. De Vylder, F. & Goovaerts, M., 2000. "Homogeneous risk models with equalized claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 223-238, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    2. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2016. "On the evaluation of finite-time ruin probabilities in a dependent risk model," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 268-286.
    3. Macci, Claudio & Pacchiarotti, Barbara, 2015. "Large deviations for a class of counting processes and some statistical applications," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 36-48.
    4. Pierre-Olivier Goffard & Claude Lefèvre, 2018. "Duality in ruin problems for ordered risk models," Post-Print hal-01398910, HAL.
    5. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    6. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    7. Pierre-Olivier Goffard, 2019. "Two-sided exit problems in the ordered risk model," Post-Print hal-01528204, HAL.
    8. Dimitrova, Dimitrina S. & Ignatov, Zvetan G. & Kaishev, Vladimir K. & Tan, Senren, 2020. "On double-boundary non-crossing probability for a class of compound processes with applications," European Journal of Operational Research, Elsevier, vol. 282(2), pages 602-613.
    9. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2019. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Post-Print hal-01887402, HAL.
    10. Li, Shuanming & Lu, Yi, 2017. "Distributional study of finite-time ruin related problems for the classical risk model," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 319-330.
    11. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2017. "On the First Crossing of Two Boundaries by an Order Statistics Risk Process," Risks, MDPI, vol. 5(3), pages 1-14, August.
    12. Kim, Bara & Kim, Jeongsim & Kim, Jerim, 2021. "De Vylder and Goovaerts' conjecture on homogeneous risk models with equalized claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 186-201.
    13. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    14. Claude Lefèvre & Philippe Picard, 2014. "Ruin Probabilities for Risk Models with Ordered Claim Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 885-905, December.
    15. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2018. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Working Papers hal-01887402, HAL.
    16. Pierre-Olivier Goffard, 2019. "Two-Sided Exit Problems in the Ordered Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 539-549, June.
    17. Pierre-Olivier Goffard, 2019. "Fraud risk assessment within blockchain transactions," Working Papers hal-01716687, HAL.
    18. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2019. "Ruin and Deficit Under Claim Arrivals with the Order Statistics Property," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 511-530, June.
    19. Pierre-O. Goffard, 2019. "Fraud risk assessment within blockchain transactions," Post-Print hal-01716687, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2017. "On the First Crossing of Two Boundaries by an Order Statistics Risk Process," Risks, MDPI, vol. 5(3), pages 1-14, August.
    2. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    3. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    4. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    5. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    6. Claude Lefèvre & Philippe Picard, 2014. "Ruin Probabilities for Risk Models with Ordered Claim Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 885-905, December.
    7. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2019. "Ruin and Deficit Under Claim Arrivals with the Order Statistics Property," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 511-530, June.
    8. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2016. "On the evaluation of finite-time ruin probabilities in a dependent risk model," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 268-286.
    9. Pierre-Olivier Goffard & Claude Lefèvre, 2018. "Duality in ruin problems for ordered risk models," Post-Print hal-01398910, HAL.
    10. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    11. Kim, Bara & Kim, Jeongsim & Kim, Jerim, 2021. "De Vylder and Goovaerts' conjecture on homogeneous risk models with equalized claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 186-201.
    12. Pierre-Olivier Goffard, 2017. "Two-sided exit problems in the ordered risk model," Working Papers hal-01528204, HAL.
    13. Andrius Grigutis & Jonas Šiaulys, 2020. "Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model," Mathematics, MDPI, vol. 8(2), pages 1-30, January.
    14. Pierre-Olivier Goffard, 2019. "Fraud risk assessment within blockchain transactions," Working Papers hal-01716687, HAL.
    15. Mathieu Bargès & Stéphane Loisel & Xavier Venel, 2011. "On finite-time ruin probabilities with reinsurance cycles influenced by large claims," Post-Print hal-00430178, HAL.
    16. Pierre-Olivier Goffard, 2019. "Two-sided exit problems in the ordered risk model," Post-Print hal-01528204, HAL.
    17. Pierre-Olivier Goffard, 2019. "Two-Sided Exit Problems in the Ordered Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 539-549, June.
    18. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    19. Bihao Su & Chenglong Xu & Jingchao Li, 2022. "A Deep Neural Network Approach to Solving for Seal’s Type Partial Integro-Differential Equation," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    20. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:512-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.