IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v101y2021ipbp186-201.html
   My bibliography  Save this article

De Vylder and Goovaerts' conjecture on homogeneous risk models with equalized claim amounts

Author

Listed:
  • Kim, Bara
  • Kim, Jeongsim
  • Kim, Jerim

Abstract

De Vylder and Goovaerts (2000) made a conjecture on the comparison of the finite time ruin probability in a homogeneous risk model and the corresponding ruin probability in an associated model with equalized claim amounts. The conjecture, however, remains an open problem. In this paper, we provide a conjecture that is stronger than De Vylder and Goovaerts' conjecture and also provide sufficient conditions for the conjectures, which are more mathematically tractable than De Vylder and Goovaerts' conjecture and thus easier to work with. By using the sufficient conditions for the conjectures, we solve De Vylder and Goovaerts' conjecture when n=3, where n is the number of claims in the finite time.

Suggested Citation

  • Kim, Bara & Kim, Jeongsim & Kim, Jerim, 2021. "De Vylder and Goovaerts' conjecture on homogeneous risk models with equalized claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 186-201.
  • Handle: RePEc:eee:insuma:v:101:y:2021:i:pb:p:186-201
    DOI: 10.1016/j.insmatheco.2021.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721001190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Yann Robert, 2014. "On the De Vylder and Goovaerts Conjecture About Ruin for Equalized Claims," Post-Print hal-02006620, HAL.
    2. De Vylder, F. E. & Goovaerts, M. J., 1999. "Inequality extensions of Prabhu's formula in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 249-271, May.
    3. Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
    4. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2019. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Post-Print hal-01887402, HAL.
    5. De Vylder, F. & Goovaerts, M., 2000. "Homogeneous risk models with equalized claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 223-238, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    2. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2019. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Post-Print hal-01887402, HAL.
    3. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2017. "On the First Crossing of Two Boundaries by an Order Statistics Risk Process," Risks, MDPI, vol. 5(3), pages 1-14, August.
    4. Stéphane Loisel & Charles Minier, 2023. "On the Devylder–Goovaerts Conjecture in Ruin Theory," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    5. Pierre-Olivier Goffard, 2019. "Two-sided exit problems in the ordered risk model," Post-Print hal-01528204, HAL.
    6. Pierre-Olivier Goffard, 2019. "Two-Sided Exit Problems in the Ordered Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 539-549, June.
    7. Stefan Ankirchner & Christophette Blanchet-Scalliet & Nabil Kazi-Tani, 2018. "The De Vylder-Goovaerts conjecture holds true within the diffusion limit," Working Papers hal-01887402, HAL.
    8. Pierre-Olivier Goffard & Claude Lefèvre, 2018. "Duality in ruin problems for ordered risk models," Post-Print hal-01398910, HAL.
    9. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    10. Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
    11. Claude Lefèvre & Philippe Picard, 2014. "Ruin Probabilities for Risk Models with Ordered Claim Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 885-905, December.
    12. Pierre-Olivier Goffard, 2017. "Two-sided exit problems in the ordered risk model," Working Papers hal-01528204, HAL.
    13. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    14. Macci, Claudio & Pacchiarotti, Barbara, 2015. "Large deviations for a class of counting processes and some statistical applications," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 36-48.
    15. Dimitrova, Dimitrina S. & Ignatov, Zvetan G. & Kaishev, Vladimir K. & Tan, Senren, 2020. "On double-boundary non-crossing probability for a class of compound processes with applications," European Journal of Operational Research, Elsevier, vol. 282(2), pages 602-613.
    16. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    17. Pierre-Olivier Goffard, 2019. "Fraud risk assessment within blockchain transactions," Working Papers hal-01716687, HAL.
    18. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2019. "Ruin and Deficit Under Claim Arrivals with the Order Statistics Property," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 511-530, June.
    19. Lefèvre, Claude & Trufin, Julien & Zuyderhoff, Pierre, 2017. "Some comparison results for finite-time ruin probabilities in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 143-149.
    20. Pierre-O. Goffard, 2019. "Fraud risk assessment within blockchain transactions," Post-Print hal-01716687, HAL.

    More about this item

    Keywords

    De Vylder and Goovaerts' conjecture; Homogeneous risk model; Ruin probability; Risk reserve process; Order statistics;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:101:y:2021:i:pb:p:186-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.