IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v47y2010i1p27-35.html
   My bibliography  Save this article

Optimal joint survival reinsurance: An efficient frontier approach

Author

Listed:
  • Dimitrova, Dimitrina S.
  • Kaishev, Vladimir K.

Abstract

The problem of optimal excess of loss reinsurance with a limiting and a retention level is considered. It is demonstrated that this problem can be solved, combining specific risk and performance measures, under some relatively general assumptions for the risk model, under which the premium income is modelled by any non-negative, non-decreasing function, claim arrivals follow a Poisson process and claim amounts are modelled by any continuous joint distribution. As a performance measure, we define the expected profits at time x of the direct insurer and the reinsurer, given their joint survival up to x, and derive explicit expressions for their numerical evaluation. The probability of joint survival of the direct insurer and the reinsurer up to the finite time horizon x is employed as a risk measure. An efficient frontier type approach to setting the limiting and the retention levels, based on the probability of joint survival considered as a risk measure and on the expected profit given joint survival, considered as a performance measure is introduced. Several optimality problems are defined and their solutions are illustrated numerically on several examples of appropriate claim amount distributions, both for the case of dependent and independent claim severities.

Suggested Citation

  • Dimitrova, Dimitrina S. & Kaishev, Vladimir K., 2010. "Optimal joint survival reinsurance: An efficient frontier approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 27-35, August.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:1:p:27-35
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00034-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lesław Gajek & Dariusz Zagrodny, 2004. "Reinsurance Arrangements Maximizing Insurer's Survival Probability," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(3), pages 421-435, September.
    2. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
    3. Gajek, Leslaw & Zagrodny, Dariusz, 2004. "Optimal reinsurance under general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 227-240, April.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Verlaak, Robert & Beirlant, Jan, 2003. "Optimal reinsurance programs: An optimal combination of several reinsurance protections on a heterogeneous insurance portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 381-403, October.
    6. Kaishev, Vladimir K. & Dimitrova, Dimitrina S., 2006. "Excess of loss reinsurance under joint survival optimality," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 376-389, December.
    7. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    2. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    3. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    4. Amir T. Payandeh-Najafabadi & Ali Panahi-Bazaz, 2017. "An Optimal Combination of Proportional and Stop-Loss Reinsurance Contracts From Insurer's and Reinsurer's Viewpoints," Papers 1701.05450, arXiv.org.
    5. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.
    6. Lefèvre Claude & Picard Philippe, 2023. "Abel-Gontcharoff polynomials, parking trajectories and ruin probabilities," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-17.
    7. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    8. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    9. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    10. Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
    11. Başak Bulut Karageyik & Şule Şahin, 2016. "Optimal Retention Level for Infinite Time Horizons under MADM," Risks, MDPI, vol. 5(1), pages 1-24, December.
    12. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2022. "Risk transference constraints in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 27-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    2. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
    3. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    4. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    5. Jianfa Cong & Ken Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    6. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    7. Yinzhi Wang & Erik B{o}lviken, 2019. "How much is optimal reinsurance degraded by error?," Papers 1912.04175, arXiv.org.
    8. Jianfa Cong & Ken Seng Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    9. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    10. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    11. Guerra, M. & de Moura, A.B., 2021. "Reinsurance of multiple risks with generic dependence structures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 547-571.
    12. Sun, Haoze & Weng, Chengguo & Zhang, Yi, 2017. "Optimal multivariate quota-share reinsurance: A nonparametric mean-CVaR framework," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 197-214.
    13. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    14. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    15. Mi Chen & Wenyuan Wang & Ruixing Ming, 2016. "Optimal Reinsurance Under General Law-Invariant Convex Risk Measure and TVaR Premium Principle," Risks, MDPI, vol. 4(4), pages 1-12, December.
    16. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    17. Alejandro Balbas & Beatriz Balbas & Raquel Balbas, 2013. "Optimal Reinsurance: A Risk Sharing Approach," Risks, MDPI, vol. 1(2), pages 1-12, August.
    18. Başak Bulut Karageyik & Şule Şahin, 2016. "Optimal Retention Level for Infinite Time Horizons under MADM," Risks, MDPI, vol. 5(1), pages 1-24, December.
    19. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    20. Zheng, Yanting & Cui, Wei, 2014. "Optimal reinsurance with premium constraint under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 109-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:1:p:27-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.