IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00201377.html
   My bibliography  Save this paper

Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities

Author

Listed:
  • Stéphane Loisel

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Claude Lefèvre

    (ULB - Département de Mathématique [Bruxelles] - ULB - Faculté des Sciences [Bruxelles] - ULB - Université libre de Bruxelles)

Abstract

This paper is concerned with the compound Poisson risk model and two generalized models with still Poisson claim arrivals. One extension incorporates inhomogeneity in the premium input and in the claim arrival process, while the other takes into account possible dependence between the successive claim amounts. The problem under study for these risk models is the evaluation of the probabilities of (non-)ruin over any horizon of finite length. The main recent methods, exact or approximate, used to compute the ruin probabilities are reviewed and discussed in a unified way. Special attention is then paid to an analysis of the qualitative impact of dependence between claim amounts.

Suggested Citation

  • Stéphane Loisel & Claude Lefèvre, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Post-Print hal-00201377, HAL.
  • Handle: RePEc:hal:journl:hal-00201377
    DOI: 10.1007/s11009-009-9123-9
    Note: View the original document on HAL open archive server: https://hal.science/hal-00201377
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00201377/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s11009-009-9123-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rulliere, Didier & Loisel, Stephane, 2004. "Another look at the Picard-Lefevre formula for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 187-203, October.
    2. Dickson, David C. M., 1992. "On the distribution of the surplus prior to ruin," Insurance: Mathematics and Economics, Elsevier, vol. 11(3), pages 191-207, October.
    3. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    4. Dickson, D.C.M., 1999. "On Numerical Evaluation of Finite Time Survival Probabilities," British Actuarial Journal, Cambridge University Press, vol. 5(3), pages 575-584, August.
    5. Ignatov, Zvetan G. & Kaishev, Vladimir K. & Krachunov, Rossen S., 2001. "An improved finite-time ruin probability formula and its Mathematica implementation," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 375-386, December.
    6. De Vylder, F. & Goovaerts, M. J., 1988. "Recursive calculation of finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 1-7, January.
    7. Dickson, David C. M. & Waters, Howard R., 1991. "Recursive Calculation of Survival Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 21(2), pages 199-221, November.
    8. Cossette, Helene & Marceau, Etienne, 2000. "The discrete-time risk model with correlated classes of business," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 133-149, May.
    9. Frostig, Esther, 2003. "Ordering ruin probabilities for dependent claim streams," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 93-114, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goffard, Pierre-Olivier & Lefèvre, Claude, 2018. "Duality in ruin problems for ordered risk models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 44-52.
    2. Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Zhao, Shouqi, 2016. "On the evaluation of finite-time ruin probabilities in a dependent risk model," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 268-286.
    3. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    4. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    5. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    6. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    7. Lefèvre, Claude & Picard, Philippe, 2011. "A new look at the homogeneous risk model," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 512-519.
    8. Andrius Grigutis & Jonas Šiaulys, 2020. "Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model," Mathematics, MDPI, vol. 8(2), pages 1-30, January.
    9. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2017. "On the First Crossing of Two Boundaries by an Order Statistics Risk Process," Risks, MDPI, vol. 5(3), pages 1-14, August.
    10. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    11. Claude Lefèvre & Philippe Picard, 2014. "Ruin Probabilities for Risk Models with Ordered Claim Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 885-905, December.
    12. Pierre-Olivier Goffard, 2019. "Fraud risk assessment within blockchain transactions," Working Papers hal-01716687, HAL.
    13. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2019. "Ruin and Deficit Under Claim Arrivals with the Order Statistics Property," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 511-530, June.
    14. Mathieu Bargès & Stéphane Loisel & Xavier Venel, 2011. "On finite-time ruin probabilities with reinsurance cycles influenced by large claims," Post-Print hal-00430178, HAL.
    15. Bihao Su & Chenglong Xu & Jingchao Li, 2022. "A Deep Neural Network Approach to Solving for Seal’s Type Partial Integro-Differential Equation," Mathematics, MDPI, vol. 10(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claude Lefèvre & Stéphane Loisel, 2009. "Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 425-441, September.
    2. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.
    3. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    4. Yuen, Kam C. & Guo, Junyi & Wu, Xueyuan, 2006. "On the first time of ruin in the bivariate compound Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 298-308, April.
    5. Romain Biard & Claude Lefèvre & Stéphane Loisel, 2008. "Impact of correlation crises in risk theory," Post-Print hal-00308782, HAL.
    6. Biard, Romain & Lefèvre, Claude & Loisel, Stéphane, 2008. "Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 412-421, December.
    7. Andrius Grigutis & Jonas Šiaulys, 2020. "Ultimate Time Survival Probability in Three-Risk Discrete Time Risk Model," Mathematics, MDPI, vol. 8(2), pages 1-30, January.
    8. Dickson, David C. M. & Waters, Howard R., 1996. "Reinsurance and ruin," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 61-80, December.
    9. Frey, Andreas & Schmidt, Volker, 1996. "Taylor-series expansion for multivariate characteristics of classical risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 1-12, May.
    10. Li, Shuanming & Lu, Yi, 2017. "Distributional study of finite-time ruin related problems for the classical risk model," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 319-330.
    11. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.
    12. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    13. Yang, Hailiang, 2003. "Ruin theory in a financial corporation model with credit risk," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 135-145, August.
    14. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    15. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    16. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2008. "Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation risk solvency margin," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 746-762, April.
    17. Lanpeng Ji & Chunsheng Zhang, 2014. "A Duality Result for the Generalized Erlang Risk Model," Risks, MDPI, vol. 2(4), pages 1-11, November.
    18. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
    19. Muhsin Tamturk & Sergey Utev, 2019. "Optimal Reinsurance via Dirac-Feynman Approach," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 647-659, June.
    20. Edita Kizinevič & Jonas Šiaulys, 2018. "The Exponential Estimate of the Ultimate Ruin Probability for the Non-Homogeneous Renewal Risk Model," Risks, MDPI, vol. 6(1), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00201377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.