IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v47y2010i2p137-143.html
   My bibliography  Save this article

Joint characteristic functions construction via copulas

Author

Listed:
  • Komelj, Janez
  • Perman, Mihael

Abstract

When modelling dependent risks it is important to be able to generate joint distributions with given marginals. One of the ways which may be useful in connection with using the Fast Fourier Transform is to construct joint characteristic functions from marginal characteristic functions. In this paper a class of n-dimensional continuous copulas is presented which in turn lead to a simple construction of joint characteristic functions with given marginal characteristic functions. Bounds on various measures of correlation are also given.

Suggested Citation

  • Komelj, Janez & Perman, Mihael, 2010. "Joint characteristic functions construction via copulas," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 137-143, October.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:137-143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00072-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    2. I. Bairamov & S. Kotz & M. Bekci, 2001. "New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(5), pages 521-536.
    3. Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2004. "A new class of bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 315-325, February.
    4. Cécile Amblard & Stéphane Girard, 2009. "A new extension of bivariate FGM copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 1-17, June.
    5. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    2. Griselda Deelstra & Michèle Vanmaele & David Vyncke, 2010. "Minimizing the Risk of a Financial Product Using a Put Option," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(4), pages 767-800, December.
    3. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    4. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    5. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    6. Alexis Bienvenüe & Didier Rullière, 2012. "Iterative Adjustment of Survival Functions by Composed Probability Distortions," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 37(2), pages 156-179, September.
    7. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    8. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    9. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    10. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2021. "New results on perturbation-based copulas," Dependence Modeling, De Gruyter, vol. 9(1), pages 347-373, January.
    11. Jia-Han Shih & Takeshi Emura, 2019. "Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula," Statistical Papers, Springer, vol. 60(4), pages 1101-1118, August.
    12. Indranil Ghosh, 2017. "Bivariate Kumaraswamy Models via Modified FGM Copulas: Properties and Applications," JRFM, MDPI, vol. 10(4), pages 1-13, November.
    13. Arthur Charpentier & Abder Oulidi, 2009. "Estimating allocations for Value-at-Risk portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 395-410, July.
    14. Jiang, Jun & Tang, Qihe, 2011. "The product of two dependent random variables with regularly varying or rapidly varying tails," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 957-961, August.
    15. repec:bpj:demode:v:6:y:2018:i:1:p:156-177:n:10 is not listed on IDEAS
    16. Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    17. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    18. Soren Bettels & Stefan Weber, 2024. "An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models," Papers 2408.02401, arXiv.org.
    19. Choo, Weihao & de Jong, Piet, 2009. "Loss reserving using loss aversion functions," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 271-277, October.
    20. Soren Bettels & Sojung Kim & Stefan Weber, 2022. "Multinomial Backtesting of Distortion Risk Measures," Papers 2201.06319, arXiv.org, revised Aug 2024.
    21. Kaluszka, Marek, 2005. "Optimal reinsurance under convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 375-398, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:137-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.