IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v10y2017i4p19-d117240.html
   My bibliography  Save this article

Bivariate Kumaraswamy Models via Modified FGM Copulas: Properties and Applications

Author

Listed:
  • Indranil Ghosh

    (Department of Mathematics and Statistics, University of North Carolina, Wilmington, NC 28403, USA)

Abstract

A copula is a useful tool for constructing bivariate and/or multivariate distributions. In this article, we consider a new modified class of FGM (Farlie–Gumbel–Morgenstern) bivariate copula for constructing several different bivariate Kumaraswamy type copulas and discuss their structural properties, including dependence structures. It is established that construction of bivariate distributions by this method allows for greater flexibility in the values of Spearman’s correlation coefficient, ρ and Kendall’s τ .

Suggested Citation

  • Indranil Ghosh, 2017. "Bivariate Kumaraswamy Models via Modified FGM Copulas: Properties and Applications," JRFM, MDPI, vol. 10(4), pages 1-13, November.
  • Handle: RePEc:gam:jjrfmx:v:10:y:2017:i:4:p:19-:d:117240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/10/4/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/10/4/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I. Bairamov & S. Kotz & M. Bekci, 2001. "New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(5), pages 521-536.
    2. Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2004. "A new class of bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 315-325, February.
    3. Christian Genest & Michel Gendron & Michaël Bourdeau-Brien, 2009. "The Advent of Copulas in Finance," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 609-618.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indranil Ghosh & Filipe J. Marques, 2021. "Tail Conditional Expectations Based on Kumaraswamy Dispersion Models," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    2. Stephen Chan & Saralees Nadarajah, 2020. "Extreme Values and Financial Risk," JRFM, MDPI, vol. 13(2), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    2. Jiang, Jun & Tang, Qihe, 2011. "The product of two dependent random variables with regularly varying or rapidly varying tails," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 957-961, August.
    3. Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    4. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    5. Komelj, Janez & Perman, Mihael, 2010. "Joint characteristic functions construction via copulas," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 137-143, October.
    6. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
    7. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    8. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    9. Mukhtar M. Salah & M. El-Morshedy & M. S. Eliwa & Haitham M. Yousof, 2020. "Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    10. Khan, Ashraf & Goodell, John W. & Hassan, M. Kabir & Paltrinieri, Andrea, 2022. "A bibliometric review of finance bibliometric papers," Finance Research Letters, Elsevier, vol. 47(PA).
    11. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    12. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    13. Mahmoud M. Mansour & Mohamed Ibrahim & Khaoula Aidi & Nadeem Shafique Butt & Mir Masoom Ali & Haitham M. Yousof & Mohamed S. Hamed, 2020. "A New Log-Logistic Lifetime Model with Mathematical Properties, Copula, Modified Goodness-of-Fit Test for Validation and Real Data Modeling," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    14. repec:hum:wpaper:sfb649dp2012-049 is not listed on IDEAS
    15. Ebrahimi, Nader & Hamedani, G.G. & Soofi, Ehsan S. & Volkmer, Hans, 2010. "A class of models for uncorrelated random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1859-1871, September.
    16. Cécile Amblard & Stéphane Girard, 2009. "A new extension of bivariate FGM copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 1-17, June.
    17. Tomav{z} Kov{s}ir & Matjav{z} Omladiv{c}, 2018. "Reflected maxmin copulas and modelling quadrant subindependence," Papers 1808.07646, arXiv.org, revised Dec 2018.
    18. Alcock, Jamie & Sinagl, Petra, 2022. "International determinants of asymmetric dependence in investment returns," Journal of International Money and Finance, Elsevier, vol. 122(C).
    19. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2016. "Stat Trek. An interview with Christian Genest," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-14, May.
    20. Arbel, Julyan & Crispino, Marta & Girard, Stéphane, 2019. "Dependence properties and Bayesian inference for asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    21. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:10:y:2017:i:4:p:19-:d:117240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.