New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics
Author
Abstract
Suggested Citation
DOI: 10.1080/02664760120047861
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lai, C. D. & Xie, M., 2000. "A new family of positive quadrant dependent bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 46(4), pages 359-364, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
- Gebizlioglu, Omer L. & Yagci, Banu, 2008. "Tolerance intervals for quantiles of bivariate risks and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1022-1027, June.
- Indranil Ghosh, 2017. "Bivariate Kumaraswamy Models via Modified FGM Copulas: Properties and Applications," JRFM, MDPI, vol. 10(4), pages 1-13, November.
- Jiang, Jun & Tang, Qihe, 2011. "The product of two dependent random variables with regularly varying or rapidly varying tails," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 957-961, August.
- Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
- Komelj, Janez & Perman, Mihael, 2010. "Joint characteristic functions construction via copulas," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 137-143, October.
- Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
- Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.
- Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
- Savita Jain & Suresh K. Sharma & Kanchan Jain, 2022. "Using Copulas for Bayesian Meta-analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 23-41, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arjun Gupta & Johanna Orozco-Castañeda & Daya Nagar, 2011. "Non-central bivariate beta distribution," Statistical Papers, Springer, vol. 52(1), pages 139-152, February.
- Hakim Bekrizadeh & Babak Jamshidi, 2017. "A new class of bivariate copulas: dependence measures and properties," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 31-50, April.
- Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
- Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
- Cerqueti, Roy & Costantini, Mauro & Lupi, Claudio, 2012. "A copula-based analysis of false discovery rate control under dependence assumptions," Economics & Statistics Discussion Papers esdp12065, University of Molise, Department of Economics.
- Cuadras, Carles M. & Cuadras, Daniel, 2008. "Eigenanalysis on a bivariate covariance kernel," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2497-2507, November.
- Lin, G.D. & Huang, J.S., 2010. "A note on the maximum correlation for Baker's bivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2227-2233, October.
- Fischer, Matthias J. & Klein, Ingo, 2004. "Constructing symmetric generalized FGM copulas by means of certain univariate distributions," Discussion Papers 61/2004, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
- Werner Hürlimann, 2017. "A comprehensive extension of the FGM copula," Statistical Papers, Springer, vol. 58(2), pages 373-392, June.
- Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2004. "A new class of bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 315-325, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:28:y:2001:i:5:p:521-536. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.