IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v28y2001i5p521-536.html
   My bibliography  Save this article

New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics

Author

Listed:
  • I. Bairamov
  • S. Kotz
  • M. Bekci

Abstract

We consider a generalization of the bivariate Farlie-Gumbel-Morgenstern (FGM) distribution by introducing additional parameters. For the generalized FGM distribution, the admissible range of the association parameter allowing positive quadrant dependence property is shown. Distributional properties of concomitants for this generalized FGM distribution are studied. Recurrence relations between moments of concomitants are presented.

Suggested Citation

  • I. Bairamov & S. Kotz & M. Bekci, 2001. "New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(5), pages 521-536.
  • Handle: RePEc:taf:japsta:v:28:y:2001:i:5:p:521-536
    DOI: 10.1080/02664760120047861
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760120047861
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760120047861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lai, C. D. & Xie, M., 2000. "A new family of positive quadrant dependent bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 46(4), pages 359-364, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    2. Gebizlioglu, Omer L. & Yagci, Banu, 2008. "Tolerance intervals for quantiles of bivariate risks and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1022-1027, June.
    3. Indranil Ghosh, 2017. "Bivariate Kumaraswamy Models via Modified FGM Copulas: Properties and Applications," JRFM, MDPI, vol. 10(4), pages 1-13, November.
    4. Jiang, Jun & Tang, Qihe, 2011. "The product of two dependent random variables with regularly varying or rapidly varying tails," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 957-961, August.
    5. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    6. Komelj, Janez & Perman, Mihael, 2010. "Joint characteristic functions construction via copulas," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 137-143, October.
    7. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
    8. Filippo Domma & Sabrina Giordano, 2013. "A copula-based approach to account for dependence in stress-strength models," Statistical Papers, Springer, vol. 54(3), pages 807-826, August.
    9. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    10. Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    11. Savita Jain & Suresh K. Sharma & Kanchan Jain, 2022. "Using Copulas for Bayesian Meta-analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 23-41, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arjun Gupta & Johanna Orozco-Castañeda & Daya Nagar, 2011. "Non-central bivariate beta distribution," Statistical Papers, Springer, vol. 52(1), pages 139-152, February.
    2. Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
    3. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    4. Cerqueti, Roy & Costantini, Mauro & Lupi, Claudio, 2012. "A copula-based analysis of false discovery rate control under dependence assumptions," Economics & Statistics Discussion Papers esdp12065, University of Molise, Department of Economics.
    5. Cuadras, Carles M. & Cuadras, Daniel, 2008. "Eigenanalysis on a bivariate covariance kernel," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2497-2507, November.
    6. Hakim Bekrizadeh & Babak Jamshidi, 2017. "A new class of bivariate copulas: dependence measures and properties," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 31-50, April.
    7. Lin, G.D. & Huang, J.S., 2010. "A note on the maximum correlation for Baker's bivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2227-2233, October.
    8. Fischer, Matthias J. & Klein, Ingo, 2004. "Constructing symmetric generalized FGM copulas by means of certain univariate distributions," Discussion Papers 61/2004, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    9. Werner Hürlimann, 2017. "A comprehensive extension of the FGM copula," Statistical Papers, Springer, vol. 58(2), pages 373-392, June.
    10. Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2004. "A new class of bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 315-325, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:28:y:2001:i:5:p:521-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.