IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p437-443.html
   My bibliography  Save this article

Determination of risk pricing measures from market prices of risk

Author

Listed:
  • Gzyl, Henryk
  • Mayoral, Silvia

Abstract

A new insurance provider or a regulatory agency may be interested in determining a risk measure consistent with observed market prices of a collection of risks. Using a relationship between distorted coherent risk measures and spectral risk measures, we provide a method for reconstructing distortion functions from the observed prices of risk. The technique is based on an appropriate application of the method of maximum entropy in the mean, which builds upon the classical method of maximum entropy.

Suggested Citation

  • Gzyl, Henryk & Mayoral, Silvia, 2008. "Determination of risk pricing measures from market prices of risk," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 437-443, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:437-443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00106-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
    3. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    4. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    5. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    6. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    7. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    8. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    9. Tahir Choulli & Christophe Stricker, 2005. "Minimal Entropy–Hellinger Martingale Measure In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 465-490, July.
    10. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    11. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    12. J. Dhaene & R. J. A. Laeven & S. Vanduffel & G. Darkiewicz & M. J. Goovaerts, 2008. "Can a Coherent Risk Measure Be Too Subadditive?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 365-386, June.
    13. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    14. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    15. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.
    16. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    19. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    20. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    21. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    22. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gzyl, Henryk & Mayoral, Silvia, 2010. "A method for determining risk aversion functions from uncertain market prices of risk," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 84-89, August.
    2. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    3. Frédéric Godin & Van Son Lai & Denis-Alexandre Trottier, 2019. "A general class of distortion operators for pricing contingent claims with applications to CAT bonds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(7), pages 558-584, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    2. Leitner, Johannes, 2005. "Dilatation monotonous Choquet integrals," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 994-1006, December.
    3. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Zhu, Li & Li, Haijun, 2012. "Tail distortion risk and its asymptotic analysis," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 115-121.
    6. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    7. Santos, Samuel S. & Moresco, Marlon R. & Righi, Marcelo B. & Horta, Eduardo, 2024. "A note on the induction of comonotonic additive risk measures from acceptance sets," Statistics & Probability Letters, Elsevier, vol. 208(C).
    8. Boonen, Tim J., 2017. "Risk Redistribution Games With Dual Utilities," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 303-329, January.
    9. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    10. Ruodu Wang & Johanna F. Ziegel, 2014. "Distortion Risk Measures and Elicitability," Papers 1405.3769, arXiv.org, revised May 2014.
    11. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    12. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
    13. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    14. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    15. Kaluszka, M. & Laeven, R.J.A. & Okolewski, A., 2012. "A note on weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 379-381.
    16. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    17. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    18. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    19. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    20. Alex Gershkov & Benny Moldovanu & Philipp Strack & Mengxi Zhang, 2024. "Optimal Security Design for Risk-Averse Investors," ECONtribute Discussion Papers Series 325, University of Bonn and University of Cologne, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:437-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.