IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i1p35-40.html
   My bibliography  Save this article

Upper comonotonicity

Author

Listed:
  • Cheung, Ka Chun

Abstract

In this article, we study a new notion called upper comonotonicity, which is a generalization of the classical notion of comonotonicity. A random vector is upper-comonotonic if its components are moving in the same direction simultaneously when their values are greater than some thresholds. We provide a characterization of this new notion in terms of both the joint distribution function and the underlying copula. The copula characterization allows us to study the coefficient of upper tail dependence as well as the distributional representation of an upper-comonotonic random vector. As an application to financial economics, we show that the several commonly used risk measures, like the Value-at-Risk, the Tail Value-at-Risk, and the expected shortfall, are additive, not only for sum of comonotonic risks, but also for sum of upper-comonotonic risks, provided that the level of probability is greater than a certain threshold.

Suggested Citation

  • Cheung, Ka Chun, 2009. "Upper comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 35-40, August.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:1:p:35-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00032-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    2. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    2. Corrado De Vecchi & Max Nendel & Jan Streicher, 2024. "Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty," Papers 2406.19242, arXiv.org.
    3. Dong, Jing & Cheung, Ka Chun & Yang, Hailiang, 2010. "Upper comonotonicity and convex upper bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 159-166, October.
    4. Cheung, Ka Chun, 2010. "Characterizing a comonotonic random vector by the distribution of the sum of its components," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 130-136, October.
    5. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    6. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    7. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    8. Zheng, Yanting & Luan, Xin & Lu, Xin & Liu, Jiaming, 2023. "A new view of risk contagion by decomposition of dependence structure: Empirical analysis of Sino-US stock markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
    9. Cheung, Ka Chun & Lo, Ambrose, 2013. "Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 334-342.
    10. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    11. Durante, Fabrizio & Fernández Sánchez, Juan & Sempi, Carlo, 2013. "Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 897-905.
    12. Zhang, Lianzeng & Duan, Baige, 2013. "Extensions of the notion of overall comonotonicity to partial comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 457-464.
    13. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“The use of flexible quantile-based measures in risk assessment”," IREA Working Papers 201323, University of Barcelona, Research Institute of Applied Economics, revised Dec 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romera, Rosario & Molanes, Elisa M., 2008. "Copulas in finance and insurance," DES - Working Papers. Statistics and Econometrics. WS ws086321, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    3. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    4. Zheng, Yanting & Yang, Jingping & Huang, Jianhua Z., 2011. "Approximation of bivariate copulas by patched bivariate Fréchet copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 246-256, March.
    5. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    6. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    7. Huang, H. & Milevsky, M. A. & Wang, J., 2004. "Ruined moments in your life: how good are the approximations?," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 421-447, June.
    8. Denuit, Michel & Hieber, Peter & Robert, Christian Y., 2021. "Mortality credits within large survivor funds," LIDAM Discussion Papers ISBA 2021038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    10. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    11. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    12. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    13. Barczy, Mátyás & K. Nedényi, Fanni & Sütő, László, 2023. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 107-128.
    14. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    15. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    16. Manesh, Sirous Fathi & Khaledi, Baha-Eldin & Dhaene, Jan, 2016. "Optimal allocation of policy deductibles for exchangeable risks," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 87-92.
    17. Michel Denuit & Jan Dhaene & Christian Y. Robert, 2022. "Risk‐sharing rules and their properties, with applications to peer‐to‐peer insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 615-667, September.
    18. Sinem Bas & Philippe Bich & Alain Chateauneuf, 2021. "Multidimensional inequalities and generalized quantile functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 375-409, March.
    19. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    20. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:1:p:35-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.