IDEAS home Printed from https://ideas.repec.org/p/ete/afiper/501184.html
   My bibliography  Save this paper

Optimal allocation of policy deductibles for exchangeable risks

Author

Listed:
  • Sirous Fathi Manesh
  • Baha-Eldin Khaledi
  • Jan Dhaene

Abstract

Let X1; : : : ;Xn be a set of n continuous and non-negative random variables, with log-concave joint density function f, faced by a person who seeks for an optimal deductible coverage for this n risks. Let d = (d1; : : : dn) and d = (d 1; : : : d n) be two vectors of deductibles such that d is majorized by d. It is shown that Σn i=1(Xi ^ di) is larger than Σn i=1(Xi ^ d i ) in stochastic dominance, provided f is exchangeable. As a result, the vector ( Σn i=1 di; 0; : : : ; 0) is an optimal allocation that maximizes the expected utility of the policyholder's wealth. It is proven that the same result remains to hold in some situations if we drop the assumption that f is log-concave.

Suggested Citation

  • Sirous Fathi Manesh & Baha-Eldin Khaledi & Jan Dhaene, 2015. "Optimal allocation of policy deductibles for exchangeable risks," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 501184, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
  • Handle: RePEc:ete:afiper:501184
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/retrieve/324791
    Download Restriction: KU Leuven intranet only, request a copy at https://lirias.kuleuven.be/handle/123456789/501184
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cheung, Ka Chun, 2007. "Optimal allocation of policy limits and deductibles," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 382-391, November.
    2. Mark Bagnoli & Ted Bergstrom, 2006. "Log-concave probability and its applications," Studies in Economic Theory, in: Charalambos D. Aliprantis & Rosa L. Matzkin & Daniel L. McFadden & James C. Moore & Nicholas C. Yann (ed.), Rationality and Equilibrium, pages 217-241, Springer.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    4. Hua, Lei & Cheung, Ka Chun, 2008. "Stochastic orders of scalar products with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 865-872, June.
    5. Franke, Guenter & Schlesinger, Harris & Stapleton, Richard C., 2011. "Risk taking with additive and multiplicative background risks," Journal of Economic Theory, Elsevier, vol. 146(4), pages 1547-1568, July.
    6. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    7. Hua, Lei & Cheung, Ka Chun, 2008. "Worst allocations of policy limits and deductibles," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 93-98, August.
    8. Pratt, John W, 1988. "Aversion to One Risk in the Presence of Others," Journal of Risk and Uncertainty, Springer, vol. 1(4), pages 395-413, December.
    9. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    10. Tsanakas, Andreas, 2008. "Risk measurement in the presence of background risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 520-528, April.
    11. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    12. Van Heerwaarden, A. E. & Kaas, R. & Goovaerts, M. J., 1989. "Optimal reinsurance in relation to ordering of risks," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 11-17, March.
    13. Lu, ZhiYi & Meng, LiLi, 2011. "Stochastic comparisons for allocations of policy limits and deductibles with applications," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 338-343, May.
    14. Finkelshtain, Israel & Kella, Offer & Scarsini, Marco, 1999. "On risk aversion with two risks," Journal of Mathematical Economics, Elsevier, vol. 31(2), pages 239-250, March.
    15. Denuit, Michel & Vermandele, Catherine, 1998. "Optimal reinsurance and stop-loss order," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 229-233, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    2. Wei Wei, 2018. "Properties of Stochastic Arrangement Increasing and Their Applications in Allocation Problems," Risks, MDPI, vol. 6(2), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinping You & Xiaohu Li, 2017. "Most unfavorable deductibles and coverage limits for multiple random risks with Archimedean copulas," Annals of Operations Research, Springer, vol. 259(1), pages 485-501, December.
    2. Yinping You & Xiaohu Li & Rui Fang, 2021. "On coverage limits and deductibles for SAI loss severities," Annals of Operations Research, Springer, vol. 297(1), pages 341-357, February.
    3. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    4. Maria Mercè Claramunt & Maite Màrmol, 2020. "Refundable deductible insurance," Working Papers hal-02909299, HAL.
    5. Cheung, Ka Chun, 2009. "Applications of conditional comonotonicity to some optimization problems," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 89-93, August.
    6. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    7. Manesh, Sirous Fathi & Khaledi, Baha-Eldin, 2015. "Allocations of policy limits and ordering relations for aggregate remaining claims," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 9-14.
    8. Halim Zeghdoudi & Meriem Bouhadjar & Mohamed Riad Remita, 2014. "On Stochastic Orders and its applications : Policy limits and Deductibles," Papers 1411.1609, arXiv.org, revised Jan 2015.
    9. Lu, ZhiYi & Meng, LiLi, 2011. "Stochastic comparisons for allocations of policy limits and deductibles with applications," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 338-343, May.
    10. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    11. Zhuang, Weiwei & Chen, Zijin & Hu, Taizhong, 2009. "Optimal allocation of policy limits and deductibles under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 409-414, June.
    12. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    13. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    14. Denuit, Michel & Dhaene, Jan, 2012. "Convex order and comonotonic conditional mean risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 265-270.
    15. Pan Xiaoqing & Li Xiaohu, 2017. "On capital allocation for stochastic arrangement increasing actuarial risks," Dependence Modeling, De Gruyter, vol. 5(1), pages 145-153, January.
    16. Cai, Jun & Wei, Wei, 2014. "Some new notions of dependence with applications in optimal allocation problems," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 200-209.
    17. Georges Dionne & Jingyuan Li, 2012. "Comparative Ross Risk Aversion in the Presence of Quadrant Dependent Risks," Cahiers de recherche 1226, CIRPEE.
    18. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    19. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    20. Dionne, Georges & Li, Jingyuan, 2014. "Comparative Ross risk aversion in the presence of mean dependent risks," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 128-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:afiper:501184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://feb.kuleuven.be/AFI .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.