Characterizing a comonotonic random vector by the distribution of the sum of its components
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dhaene, Jan & Denuit, Michel & Vanduffel, Steven, 2009. "Correlation order, merging and diversification," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 325-332, December.
- Muller, Alfred, 1996. "Orderings of risks: A comparative study via stop-loss transforms," Insurance: Mathematics and Economics, Elsevier, vol. 17(3), pages 215-222, April.
- Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
- Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
- Cheung, Ka Chun, 2010. "Comonotonic convex upper bound and majorization," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 154-158, October.
- Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006.
"Risk measurement with equivalent utility principles,"
Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
- Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-25, July.
- Cheung, Ka Chun, 2008. "Characterization of comonotonicity using convex order," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 403-406, December.
- Cheung, Ka Chun, 2009. "Upper comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 35-40, August.
- Kaas, R. & Dhaene, J. & Vyncke, D. & Goovaerts, M.J. & Denuit, M., 2002. "A Simple Geometric Proof that Comonotonic Risks Have the Convex-Largest Sum," ASTIN Bulletin, Cambridge University Press, vol. 32(1), pages 71-80, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
- Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
- Wang, Ruodu & Zitikis, Ričardas, 2020. "Weak comonotonicity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 386-397.
- Cheung, Ka Chun & Lo, Ambrose, 2013. "Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 334-342.
- Mao, Tiantian & Hu, Taizhong, 2011. "A new proof of Cheung's characterization of comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 214-216, March.
- Dhaene, Jan & Linders, Daniël & Schoutens, Wim & Vyncke, David, 2012. "The Herd Behavior Index: A new measure for the implied degree of co-movement in stock markets," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 357-370.
- Cheung, Ka Chun & Dhaene, Jan & Lo, Ambrose & Tang, Qihe, 2014. "Reducing risk by merging counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 58-65.
- Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
- Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.
- Gilles Boevi Koumou & Georges Dionne, 2022.
"Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation,"
Risks, MDPI, vol. 10(11), pages 1-19, October.
- Koumou, Gilles Boevi & Dionne, Georges, 2019. "Coherent diversification measures in portfolio theory: An axiomatic foundation," Working Papers 19-2, HEC Montreal, Canada Research Chair in Risk Management.
- Gilles Boevi KOUMOU & Georges DIONNE, 2021. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Working Papers 7, Africa Institute for Research in Economics and Social Sciences.
- Chuancun Yin & Dan Zhu, 2016. "Sharp convex bounds on the aggregate sums--An alternative proof," Papers 1603.05373, arXiv.org, revised May 2016.
- Dong, Jing & Cheung, Ka Chun & Yang, Hailiang, 2010. "Upper comonotonicity and convex upper bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 159-166, October.
- Mao, Tiantian & Hu, Taizhong, 2011. "A new proof of Cheung's characterization of comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 214-216, March.
- Choo, Weihao & de Jong, Piet, 2016. "Insights to systematic risk and diversification across a joint probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 142-150.
- Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
- Cheung, Ka Chun, 2009. "Applications of conditional comonotonicity to some optimization problems," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 89-93, August.
- Chen, X. & Deelstra, G. & Dhaene, J. & Vanmaele, M., 2008. "Static super-replicating strategies for a class of exotic options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1067-1085, June.
- Cheung, Ka Chun, 2008. "Improved convex upper bound via conditional comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 651-655, April.
- Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
- Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
- Jae Youn Ahn, 2015. "Negative Dependence Concept in Copulas and the Marginal Free Herd Behavior Index," Papers 1503.03180, arXiv.org.
- Lee Woojoo & Ahn Jae Youn, 2017. "Measuring herd behavior: properties and pitfalls," Dependence Modeling, De Gruyter, vol. 5(1), pages 316-329, December.
- Cheung, Ka Chun, 2008. "Characterization of comonotonicity using convex order," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 403-406, December.
- Cheung, Ka Chun, 2010. "Comonotonic convex upper bound and majorization," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 154-158, October.
- Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
- Zhang, Lianzeng & Duan, Baige, 2013. "Extensions of the notion of overall comonotonicity to partial comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 457-464.
- Vanduffel, S. & Dhaene, J. & Goovaerts, M. & Kaas, R., 2003. "The hurdle-race problem," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 405-413, October.
More about this item
Keywords
Convex order Stop-loss order Comonotonicity Distortion risk measure Distortion function;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:130-136. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.