IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i2p638-650.html
   My bibliography  Save this article

Fitting and validation of a bivariate model for large claims

Author

Listed:
  • Drees, Holger
  • Müller, Peter

Abstract

We consider an extended version of a model proposed by Ledford and Tawn [Ledford, A.W., Tawn, J.A., 1997. Modelling dependence within joint tail regions. J. R. Stat. Soc. 59 (2), 475-499] for the joint tail distribution of a bivariate random vector, which essentially assumes an asymptotic power scaling law for the probability that both the components of the vector are jointly large. After discussing how to fit the model, we devise a graphical tool that analyzes the differences between certain empirical probabilities and model based estimates of the same probabilities. The asymptotic normality of these differences allows the construction of statistical tests for the model assumption. The results are applied to claims of a Danish fire insurance and to medical claims from US health insurances.

Suggested Citation

  • Drees, Holger & Müller, Peter, 2008. "Fitting and validation of a bivariate model for large claims," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 638-650, April.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:638-650
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00080-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    2. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.
    2. Rocco Roberto Cerchiara & Francesco Acri, 2020. "Estimating the Volatility of Non-Life Premium Risk Under Solvency II: Discussion of Danish Fire Insurance Data," Risks, MDPI, vol. 8(3), pages 1-19, July.
    3. Rocco Roberto Cerchiara & Francesco Acri, 2016. "Aggregate Loss Distribution And Dependence: Composite Models, Copula Functions And Fast Fourier Transform For The Danish Re Insurance Data," Working Papers 201608, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    2. Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.
    3. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    4. Ibrahim Ergen, 2014. "Tail dependence and diversification benefits in emerging market stocks: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 46(19), pages 2215-2227, July.
    5. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    6. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    7. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    8. Cristina Sommacampagna, 2002. "Stima del Value-at-Risk con il Filtro di Kalman," Rivista di Politica Economica, SIPI Spa, vol. 92(6), pages 147-174, November-.
    9. Søren Asmussen & Jaakko Lehtomaa, 2017. "Distinguishing Log-Concavity from Heavy Tails," Risks, MDPI, vol. 5(1), pages 1-14, February.
    10. Martin Hrba & Matúš Maciak & Barbora Peštová & Michal Pešta, 2022. "Bootstrapping Not Independent and Not Identically Distributed Data," Mathematics, MDPI, vol. 10(24), pages 1-26, December.
    11. Moore, Kyle & Zhou, Chen, 2014. "The determinants of systemic importance," LSE Research Online Documents on Economics 59289, London School of Economics and Political Science, LSE Library.
    12. Xiangying Meng & Xianhua Wei, 2018. "Systematic Correlation is Priced as Risk Factor," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-2.
    13. Jose Fernandes & Augusto Hasman & Juan Ignacio Pena, 2007. "Risk premium: insights over the threshold," Applied Financial Economics, Taylor & Francis Journals, vol. 18(1), pages 41-59.
    14. Fang Zhang & Zhengjun Zhang, 2020. "The tail dependence of the carbon markets: The implication of portfolio management," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    15. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    16. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    17. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    18. Brazauskas, Vytaras & Kleefeld, Andreas, 2009. "Robust and efficient fitting of the generalized Pareto distribution with actuarial applications in view," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 424-435, December.
    19. Goran Andjelic & Ivana Milosev & Vladimir Djakovic, 2010. "Extreme Value Theory In Emerging Markets," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 55(185), pages 63-106, April - J.
    20. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:638-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.