IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v41y2007i3p382-391.html
   My bibliography  Save this article

Optimal allocation of policy limits and deductibles

Author

Listed:
  • Cheung, Ka Chun

Abstract

In this paper, we study the problems of optimal allocation of policy limits and deductibles. Several objective functions are considered: maximizing the expected utility of wealth assuming the losses are independent, minimizing the expected total retained loss and maximizing the expected utility of wealth when the dependence structure is unknown. Orderings of the optimal allocations are obtained.

Suggested Citation

  • Cheung, Ka Chun, 2007. "Optimal allocation of policy limits and deductibles," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 382-391, November.
  • Handle: RePEc:eee:insuma:v:41:y:2007:i:3:p:382-391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(06)00187-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    2. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    4. Cheung, Ka Chun, 2006. "Optimal portfolio problem with unknown dependency structure," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 167-175, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yiying & Zhao, Peng, 2015. "Comparisons on aggregate risks from two sets of heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 124-135.
    2. Hua, Lei & Cheung, Ka Chun, 2008. "Worst allocations of policy limits and deductibles," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 93-98, August.
    3. Hau, Arthur, 2010. "Comparative statics of changes in risk on monotonically and partially responsive kinked payoffs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 267-276, February.
    4. Manesh, Sirous Fathi & Khaledi, Baha-Eldin & Dhaene, Jan, 2016. "Optimal allocation of policy deductibles for exchangeable risks," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 87-92.
    5. Zhuang, Weiwei & Chen, Zijin & Hu, Taizhong, 2009. "Optimal allocation of policy limits and deductibles under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 409-414, June.
    6. Manesh, Sirous Fathi & Khaledi, Baha-Eldin, 2015. "Allocations of policy limits and ordering relations for aggregate remaining claims," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 9-14.
    7. Maria Mercè Claramunt & Maite Màrmol, 2020. "Refundable deductible insurance," Working Papers hal-02909299, HAL.
    8. Cai, Jun & Wei, Wei, 2014. "Some new notions of dependence with applications in optimal allocation problems," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 200-209.
    9. Wei Wei, 2018. "Properties of Stochastic Arrangement Increasing and Their Applications in Allocation Problems," Risks, MDPI, vol. 6(2), pages 1-12, April.
    10. Pan Xiaoqing & Li Xiaohu, 2017. "On capital allocation for stochastic arrangement increasing actuarial risks," Dependence Modeling, De Gruyter, vol. 5(1), pages 145-153, January.
    11. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    12. Hua, Lei & Cheung, Ka Chun, 2008. "Stochastic orders of scalar products with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 865-872, June.
    13. Yinping You & Xiaohu Li & Rui Fang, 2021. "On coverage limits and deductibles for SAI loss severities," Annals of Operations Research, Springer, vol. 297(1), pages 341-357, February.
    14. Cheung, Ka Chun, 2009. "Applications of conditional comonotonicity to some optimization problems," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 89-93, August.
    15. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    16. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    17. Halim Zeghdoudi & Meriem Bouhadjar & Mohamed Riad Remita, 2014. "On Stochastic Orders and its applications : Policy limits and Deductibles," Papers 1411.1609, arXiv.org, revised Jan 2015.
    18. Qi Feng & J. George Shanthikumar, 2018. "Arrangement Increasing Resource Allocation," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 935-955, September.
    19. Lu, ZhiYi & Meng, LiLi, 2011. "Stochastic comparisons for allocations of policy limits and deductibles with applications," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 338-343, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Lei & Cheung, Ka Chun, 2008. "Stochastic orders of scalar products with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 865-872, June.
    2. Cheung, Ka Chun, 2006. "Optimal portfolio problem with unknown dependency structure," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 167-175, February.
    3. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    4. Zhang, Yiying & Zhao, Peng, 2015. "Comparisons on aggregate risks from two sets of heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 124-135.
    5. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
    6. Vanduffel, S. & Dhaene, J. & Goovaerts, M. & Kaas, R., 2003. "The hurdle-race problem," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 405-413, October.
    7. Hua, Lei & Cheung, Ka Chun, 2008. "Worst allocations of policy limits and deductibles," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 93-98, August.
    8. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    9. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    10. Kaas, Rob & Tang, Qihe, 2005. "A large deviation result for aggregate claims with dependent claim occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 251-259, June.
    11. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    12. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    13. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    14. Bahareh Afhami & Mohsen Rezapour & Mohsen Madadi & Vahed Maroufy, 2021. "Dynamic investment portfolio optimization using a Multivariate Merton Model with Correlated Jump Risk," Papers 2104.11594, arXiv.org.
    15. Brückner, Karsten, 2008. "Quantifying the error of convex order bounds for truncated first moments," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 261-270, February.
    16. Corrado De Vecchi & Max Nendel & Jan Streicher, 2024. "Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty," Papers 2406.19242, arXiv.org.
    17. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    18. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    19. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    20. Van Weert, Koen & Dhaene, Jan & Goovaerts, Marc, 2010. "Optimal portfolio selection for general provisioning and terminal wealth problems," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 90-97, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:41:y:2007:i:3:p:382-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.