IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v38y2006i1p167-175.html
   My bibliography  Save this article

Optimal portfolio problem with unknown dependency structure

Author

Listed:
  • Cheung, Ka Chun

Abstract

No abstract is available for this item.

Suggested Citation

  • Cheung, Ka Chun, 2006. "Optimal portfolio problem with unknown dependency structure," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 167-175, February.
  • Handle: RePEc:eee:insuma:v:38:y:2006:i:1:p:167-175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(05)00115-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey E. Lapan & David A. Hennessy, 2002. "Symmetry and order in the portfolio allocation problem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(4), pages 747-772.
    2. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    3. David A. Hennessy & Harvey E. Lapan, 2002. "The Use of Archimedean Copulas to Model Portfolio Allocations," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 143-154, April.
    4. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    5. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    6. J. Dhaene & S. Vanduffel & M. J. Goovaerts & R. Kaas & D. Vyncke, 2005. "Comonotonic Approximations for Optimal Portfolio Selection Problems," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 253-300, June.
    7. Wang, Shaun & Dhaene, Jan, 1998. "Comonotonicity, correlation order and premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 235-242, July.
    8. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    9. Masaaki Kijima & Masamitsu Ohnishi, 1996. "Portfolio Selection Problems Via The Bivariate Characterization Of Stochastic Dominance Relations1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 237-277, July.
    10. Landsberger, Michael & Meilijson, Isaac, 1990. "Demand for risky financial assets: A portfolio analysis," Journal of Economic Theory, Elsevier, vol. 50(1), pages 204-213, February.
    11. Cheung, Ka Chun & Yang, Hailiang, 2004. "Ordering optimal proportions in the asset allocation problem with dependent default risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 595-609, December.
    12. Vanduffel, S. & Dhaene, J. & Goovaerts, M. & Kaas, R., 2003. "The hurdle-race problem," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 405-413, October.
    13. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    14. Simon, S. & Goovaerts, M. J. & Dhaene, J., 2000. "An easy computable upper bound for the price of an arithmetic Asian option," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 175-183, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohu Li & Yinping You, 2014. "A note on allocation of portfolio shares of random assets with Archimedean copula," Annals of Operations Research, Springer, vol. 212(1), pages 155-167, January.
    2. Zhang, Yiying & Zhao, Peng, 2015. "Comparisons on aggregate risks from two sets of heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 124-135.
    3. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    4. Hua, Lei & Cheung, Ka Chun, 2008. "Stochastic orders of scalar products with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 865-872, June.
    5. Cheung, Ka Chun, 2007. "Optimal allocation of policy limits and deductibles," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 382-391, November.
    6. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    7. Qi Feng & J. George Shanthikumar, 2018. "Arrangement Increasing Resource Allocation," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 935-955, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Ka Chun & Yang, Hailiang, 2004. "Ordering optimal proportions in the asset allocation problem with dependent default risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 595-609, December.
    2. Cai, Jun & Wei, Wei, 2015. "Notions of multivariate dependence and their applications in optimal portfolio selections with dependent risks," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 156-169.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    4. Xiaohu Li & Yinping You, 2014. "A note on allocation of portfolio shares of random assets with Archimedean copula," Annals of Operations Research, Springer, vol. 212(1), pages 155-167, January.
    5. Chen, X. & Deelstra, G. & Dhaene, J. & Vanmaele, M., 2008. "Static super-replicating strategies for a class of exotic options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1067-1085, June.
    6. Grzegorz Darkiewicz & Griselda Deelstra & Jan Dhaene & Tom Hoedemakers & Michèle Vanmaele, 2009. "Bounds for Right Tails of Deterministic and Stochastic Sums of Random Variables," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 847-866, December.
    7. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    8. Cheung, Ka Chun, 2010. "Comonotonic convex upper bound and majorization," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 154-158, October.
    9. Vanduffel, S. & Dhaene, J. & Goovaerts, M. & Kaas, R., 2003. "The hurdle-race problem," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 405-413, October.
    10. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    11. Runhuan Feng & Xiaochen Jing & Jan Dhaene, 2015. "Comonotonic Approximations of Risk Measures for Variable Annuity Guaranteed Benefits with Dynamic Policyholder Behavior," Tinbergen Institute Discussion Papers 15-008/IV/DSF85, Tinbergen Institute.
    12. Van Weert, Koen & Dhaene, Jan & Goovaerts, Marc, 2010. "Optimal portfolio selection for general provisioning and terminal wealth problems," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 90-97, August.
    13. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    14. Maria Mercè Claramunt & Maite Màrmol, 2020. "Refundable deductible insurance," Working Papers hal-02909299, HAL.
    15. J. Marin-Solano (Universitat de Barcelona) & O. Roch (Universitat de Barcelona) & J. Dhaene (Katholieke Univerisiteit Leuven) & C. Ribas (Universitat de Barcelona) & M. Bosch-Princep (Universitat de B, 2009. "Buy-and-Hold Strategies and Comonotonic Approximations," Working Papers in Economics 213, Universitat de Barcelona. Espai de Recerca en Economia.
    16. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.
    17. Laeven, Roger J.A. & Goovaerts, Marc J. & Hoedemakers, Tom, 2005. "Some asymptotic results for sums of dependent random variables, with actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 154-172, October.
    18. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    19. Chuancun Yin & Dan Zhu, 2016. "Sharp convex bounds on the aggregate sums--An alternative proof," Papers 1603.05373, arXiv.org, revised May 2016.
    20. Qi Feng & J. George Shanthikumar, 2018. "Arrangement Increasing Resource Allocation," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 935-955, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:38:y:2006:i:1:p:167-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.