IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.11594.html
   My bibliography  Save this paper

Dynamic investment portfolio optimization using a Multivariate Merton Model with Correlated Jump Risk

Author

Listed:
  • Bahareh Afhami
  • Mohsen Rezapour
  • Mohsen Madadi
  • Vahed Maroufy

Abstract

In this paper, we are concerned with the optimization of a dynamic investment portfolio when the securities which follow a multivariate Merton model with dependent jumps are periodically invested and proceed by approximating the Condition-Value-at-Risk (CVaR) by comonotonic bounds and maximize the expected terminal wealth. Numerical studies as well as applications of our results to real datasets are also provided.

Suggested Citation

  • Bahareh Afhami & Mohsen Rezapour & Mohsen Madadi & Vahed Maroufy, 2021. "Dynamic investment portfolio optimization using a Multivariate Merton Model with Correlated Jump Risk," Papers 2104.11594, arXiv.org.
  • Handle: RePEc:arx:papers:2104.11594
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.11594
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    2. Wenhan Li & Lixia Liu & Guiwen Lv & Cuixiang Li, 2018. "Exchange option pricing in jump-diffusion models based on esscher transform," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(19), pages 4661-4672, October.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    6. MacLean, Leonard & Zhao, Yonggan & Ziemba, William, 2006. "Dynamic portfolio selection with process control," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 317-339, February.
    7. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    8. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    9. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    10. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afhami, Bahareh & Rezapour, Mohsen & Madadi, Mohsen & Maroufy, Vahed, 2023. "A comonotonic approximation to optimal terminal wealth under a multivariate Merton model with correlated jump risk," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    2. Xu, Liang & Gao, Chunyan & Kou, Gang & Liu, Qinjun, 2017. "Comonotonic approximation to periodic investment problems under stochastic drift," European Journal of Operational Research, Elsevier, vol. 262(1), pages 251-261.
    3. Yulian Fan & Huadong Zhang, 2017. "The pricing of average options with jump diffusion processes in the uncertain volatility model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, March.
    4. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    5. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    6. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    7. Brückner, Karsten, 2008. "Quantifying the error of convex order bounds for truncated first moments," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 261-270, February.
    8. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    9. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    10. Van Weert, Koen & Dhaene, Jan & Goovaerts, Marc, 2010. "Optimal portfolio selection for general provisioning and terminal wealth problems," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 90-97, August.
    11. Annaert, Jan & Deelstra, Griselda & Heyman, Dries & Vanmaele, Michèle, 2007. "Risk management of a bond portfolio using options," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 299-316, November.
    12. Antonella Campana & Paola Ferretti, 2005. "Distortion Risk Measures and Discrete Risks," Game Theory and Information 0510013, University Library of Munich, Germany.
    13. Alain Chateauneuf & Mina Mostoufi & David Vyncke, 2015. "Comonotonic Monte Carlo and its applications in option pricing and quantification of risk," Documents de travail du Centre d'Economie de la Sorbonne 15015, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    14. Hürlimann, Werner, 2010. "Analytical Pricing of the Unit-Linked Endowment with Guarantees and Periodic Premiums," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 631-653, November.
    15. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    16. J. Marin-Solano (Universitat de Barcelona) & O. Roch (Universitat de Barcelona) & J. Dhaene (Katholieke Univerisiteit Leuven) & C. Ribas (Universitat de Barcelona) & M. Bosch-Princep (Universitat de B, 2009. "Buy-and-Hold Strategies and Comonotonic Approximations," Working Papers in Economics 213, Universitat de Barcelona. Espai de Recerca en Economia.
    17. Antonella Campana & Paola Ferretti, 2008. "Bounds for Concave Distortion Risk Measures for Sums of Risks," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 43-51, Springer.
    18. Karel J. in’t Hout & Jacob Snoeijer, 2021. "Numerical Valuation of American Basket Options via Partial Differential Complementarity Problems," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    19. Karel in 't Hout & Jacob Snoeijer, 2021. "Numerical valuation of American basket options via partial differential complementarity problems," Papers 2106.01200, arXiv.org.
    20. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.11594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.