IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i3p884-896.html
   My bibliography  Save this article

General lower bounds on convex functionals of aggregate sums

Author

Listed:
  • Cheung, Ka Chun
  • Lo, Ambrose

Abstract

The determination of the dependence structure giving rise to the minimal convex sum in a general Fréchet space is a practical, yet challenging problem in quantitative risk management. In this article, we consider the closely related problem of finding lower bounds on three kinds of convex functionals, namely, convex expectations, Tail Value-at-Risk and the Haezendonck–Goovaerts risk measure, of a sum of random variables with arbitrary distributions. The sharpness of the lower bounds on the first two types of convex functionals is characterized via the extreme negative dependence structure of mutual exclusivity. Compared to existing results in the literature, our new lower bounds enjoy the advantages of generality and analytic tractability.

Suggested Citation

  • Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:884-896
    DOI: 10.1016/j.insmatheco.2013.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713001595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    2. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    3. J. Dhaene & R. J. A. Laeven & S. Vanduffel & G. Darkiewicz & M. J. Goovaerts, 2008. "Can a Coherent Risk Measure Be Too Subadditive?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 365-386, June.
    4. Dhaene, Jan & Linders, Daniël & Schoutens, Wim & Vyncke, David, 2012. "The Herd Behavior Index: A new measure for the implied degree of co-movement in stock markets," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 357-370.
    5. Cheung, Ka Chun, 2010. "Characterizing a comonotonic random vector by the distribution of the sum of its components," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 130-136, October.
    6. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, December.
    7. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    8. Wang, Bin & Wang, Ruodu, 2011. "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1344-1360, November.
    9. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    10. L. Rüschendorf, 1983. "Solution of a statistical optimization problem by rearrangement methods," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 30(1), pages 55-61, December.
    11. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    12. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    13. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    14. Cheung, Ka Chun & Lo, Ambrose, 2013. "Characterizations of counter-monotonicity and upper comonotonicity by (tail) convex order," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 334-342.
    15. Puccetti, Giovanni, 2013. "Sharp bounds on the expected shortfall for a sum of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1227-1232.
    16. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2004. "Some new classes of consistent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 505-516, June.
    17. Haezendonck, J. & Goovaerts, M., 1982. "A new premium calculation principle based on Orlicz norms," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 41-53, January.
    18. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    19. Bellini, Fabio & Rosazza Gianin, Emanuela, 2012. "Haezendonck–Goovaerts risk measures and Orlicz quantiles," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 107-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ka Chun Cheung & Michel Denuit & Jan Dhaene, 2017. "Tail mutual exclusivity and Tail-VaR lower bounds," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(1), pages 88-104, January.
    2. Chuancun Yin & Dan Zhu, 2016. "Sharp convex bounds on the aggregate sums--An alternative proof," Papers 1603.05373, arXiv.org, revised May 2016.
    3. Xun, Li & Zhou, Yangzhi & Zhou, Yong, 2019. "A generalization of Expected Shortfall based capital allocation," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 193-199.
    4. Liu, Qing & Peng, Liang & Wang, Xing, 2017. "Haezendonck–Goovaerts risk measure with a heavy tailed loss," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 28-47.
    5. Tang, Qihe & Yang, Fan, 2014. "Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 311-320.
    6. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    7. Wang, Xing & Peng, Liang, 2016. "Inference for intermediate Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 231-240.
    8. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.
    9. Hanbali, Hamza & Dhaene, Jan & Linders, Daniël, 2022. "Dependence bounds for the difference of stop-loss payoffs on the difference of two random variables," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 22-37.
    10. Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.
    11. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    12. Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Qihe & Yang, Fan, 2014. "Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 311-320.
    2. Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.
    3. Wang, Xing & Peng, Liang, 2016. "Inference for intermediate Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 231-240.
    4. Bellini, Fabio & Rosazza Gianin, Emanuela, 2012. "Haezendonck–Goovaerts risk measures and Orlicz quantiles," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 107-114.
    5. Mao, Tiantian & Hu, Taizhong, 2012. "Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 333-343.
    6. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    7. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.
    8. Niushan Gao & Cosimo Munari & Foivos Xanthos, 2019. "Stability properties of Haezendonck-Goovaerts premium principles," Papers 1909.10735, arXiv.org, revised Aug 2020.
    9. Ahn, Jae Youn & Shyamalkumar, Nariankadu D., 2014. "Asymptotic theory for the empirical Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 78-90.
    10. Gao, Niushan & Munari, Cosimo & Xanthos, Foivos, 2020. "Stability properties of Haezendonck–Goovaerts premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 94-99.
    11. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    12. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    13. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    14. Bellini Fabio & Rosazza Gianin Emanuela, 2008. "Optimal portfolios with Haezendonck risk measures," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 89-108, March.
    15. Xun, Li & Zhou, Yangzhi & Zhou, Yong, 2019. "A generalization of Expected Shortfall based capital allocation," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 193-199.
    16. Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.
    17. Xun, Li & Jiang, Renqiao & Guo, Jianhua, 2021. "The conditional Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 169(C).
    18. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    19. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    20. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:884-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.