IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v27y2000i2p237-259.html
   My bibliography  Save this article

Contribution and solvency risk in a defined benefit pension scheme

Author

Listed:
  • Haberman, Steven
  • Butt, Zoltan
  • Megaloudi, Chryssoula

Abstract

No abstract is available for this item.

Suggested Citation

  • Haberman, Steven & Butt, Zoltan & Megaloudi, Chryssoula, 2000. "Contribution and solvency risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 237-259, October.
  • Handle: RePEc:eee:insuma:v:27:y:2000:i:2:p:237-259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(00)00051-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cairns, Andrew J. G. & Parker, Gary, 1997. "Stochastic pension fund modelling," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 43-79, October.
    2. Exley, C.J. & Mehta, S.J.B. & Smith, A.D., 1997. "The Financial Theory of Defined Benefit Pension Schemes," British Actuarial Journal, Cambridge University Press, vol. 3(4), pages 835-966, October.
    3. Haberman, Steven, 1997. "Stochastic investment returns and contribution rate risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 127-139, April.
    4. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    2. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    3. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    4. Olivia S. Mitchell & John Piggott & Cagri Kumru, 2008. "Managing Public Investment Funds: Best Practices and New Challenges," NBER Working Papers 14078, National Bureau of Economic Research, Inc.
    5. Taylor, Greg, 2002. "Stochastic control of funding systems," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 323-350, June.
    6. Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2009. "Managing contribution and capital market risk in a funded public defined benefit plan: Impact of CVaR cost constraints," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 25-34, August.
    7. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2008. "Mean-variance portfolio and contribution selection in stochastic pension funding," European Journal of Operational Research, Elsevier, vol. 187(1), pages 120-137, May.
    8. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    9. Ayşegül İşcanog̃lu-Çekiç, 2016. "An Optimal Turkish Private Pension Plan with a Guarantee Feature," Risks, MDPI, vol. 4(3), pages 1-12, June.
    10. John Board & Charles Sutcliffe, 2007. "Joined-Up Pensions Policy in the UK: An Asset-Liability Model for Simultaneously Determining the Asset Allocation and Contribution Rate," Economic Analysis, Institute of Economic Sciences, vol. 40(3-4), pages 87-118.
    11. Lin, Yijia & MacMinn, Richard D. & Tian, Ruilin, 2015. "De-risking defined benefit plans," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 52-65.
    12. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    13. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    14. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2006. "Optimal investment decisions with a liability: The case of defined benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 81-98, August.
    15. Samuel H. Cox & Yijia Lin & Ruilin Tian & Jifeng Yu, 2013. "Managing Capital Market and Longevity Risks in a Defined Benefit Pension Plan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 585-620, September.
    16. Guohui Guan & Jiaqi Hu & Zongxia Liang, 2021. "Robust equilibrium strategies in a defined benefit pension plan game," Papers 2103.09121, arXiv.org.
    17. Haberman, Steven & Sung, Joo-Ho, 2005. "Optimal pension funding dynamics over infinite control horizon when stochastic rates of return are stationary," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 103-116, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Board & Charles Sutcliffe, 2007. "Joined-Up Pensions Policy in the UK: An Asset-Liability Model for Simultaneously Determining the Asset Allocation and Contribution Rate," Economic Analysis, Institute of Economic Sciences, vol. 40(3-4), pages 87-118.
    2. Chang, Shih-Chieh & Chen, Chiang-Chu, 2002. "Allocating unfunded liability in pension valuation under uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 371-387, June.
    3. Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2009. "Managing contribution and capital market risk in a funded public defined benefit plan: Impact of CVaR cost constraints," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 25-34, August.
    4. Gabay, Daniel & Grasselli, Martino, 2012. "Fair demographic risk sharing in defined contribution pension systems," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 657-669.
    5. A. Fiori Maccioni & A. Bitinas, 2013. "Lithuanian pension system's reforms following demographic and social transitions," Working Paper CRENoS 201315, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    6. Inkmann, Joachim & Blake, David, 2004. "Liability valuation and optimal asset allocation," LSE Research Online Documents on Economics 24754, London School of Economics and Political Science, LSE Library.
    7. Sergio, Bianchi & Alessandro, Trudda, 2008. "Global Asset Return in Pension Funds: a dynamical risk analysis," MPRA Paper 12011, University Library of Munich, Germany, revised 14 Jun 2008.
    8. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2001. "Minimization of risks in pension funding by means of contributions and portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 35-45, August.
    9. M. Cadoni & R. Melis & A. Trudda, 2012. "Financial crisis: a new measure for risk of pension funds assets," Working Paper CRENoS 201231, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    10. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
    11. Colombo, Luigi & Haberman, Steven, 2005. "Optimal contributions in a defined benefit pension scheme with stochastic new entrants," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 335-354, October.
    12. Alessandro Fiori Maccioni, 2011. "A Stochastic Model for the Analysis of Demographic Risk in Pay-As-You-Go Pension Funds," Papers 1106.5081, arXiv.org.
    13. Samuel H. Cox & Yijia Lin & Ruilin Tian & Jifeng Yu, 2013. "Managing Capital Market and Longevity Risks in a Defined Benefit Pension Plan," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 585-620, September.
    14. T. Gudaitis & A. Fiori Maccioni, 2014. "Optimal Individual Choice of Contribution to Second Pillar Pension System in Lithuania," Working Paper CRENoS 201402, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    15. He, Lin & Liang, Zongxia & Yuan, Fengyi, 2020. "Optimal DB-PAYGO pension management towards a habitual contribution rate," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 125-141.
    16. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2006. "Optimal investment decisions with a liability: The case of defined benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 81-98, August.
    17. Chao-Liang Chen, 2005. "The funding for a Defined Benefit (DB) pension plan based on the fair valuation of the plan's insolvency risk," Applied Economics, Taylor & Francis Journals, vol. 37(14), pages 1623-1633.
    18. Berkelaar, Arjan & Kouwenberg, Roy, 2003. "Retirement saving with contribution payments and labor income as a benchmark for investments," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1069-1097, April.
    19. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    20. Taylor, Greg, 2002. "Stochastic control of funding systems," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 323-350, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:27:y:2000:i:2:p:237-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.