IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.09121.html
   My bibliography  Save this paper

Robust equilibrium strategies in a defined benefit pension plan game

Author

Listed:
  • Guohui Guan
  • Jiaqi Hu
  • Zongxia Liang

Abstract

This paper investigates the robust {non-zero-sum} games in an aggregated {overfunded} defined benefit (abbr. DB) pension plan. The sponsoring firm is concerned with the investment performance of the fund surplus while the participants act as a union to claim a share of the fund surplus. The financial market consists of one risk-free asset and $n$ risky assets. The firm and the union both are ambiguous about the financial market and care about the robust strategies under the worst case scenario. {The union's objective is to maximize the expected discounted utility of the additional benefits, the firm's two different objectives are to maximizing the expected discounted utility of the fund surplus and the probability of the fund surplus reaching an upper level before hitting a lower level in the worst case scenario.} We formulate the related two robust non-zero-sum games for the firm and the union. Explicit forms and optimality of the solutions are shown by stochastic dynamic programming method. In the end of this paper, numerical results are illustrated to depict the economic behaviours of the robust equilibrium strategies in these two different games.

Suggested Citation

  • Guohui Guan & Jiaqi Hu & Zongxia Liang, 2021. "Robust equilibrium strategies in a defined benefit pension plan game," Papers 2103.09121, arXiv.org.
  • Handle: RePEc:arx:papers:2103.09121
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.09121
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    3. Olivier J. Blanchard, 1993. "Movements in the Equity Premium," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 24(2), pages 75-138.
    4. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    5. Hainaut, Donatien & Deelstra, Griselda, 2011. "Optimal funding of defined benefit pension plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 10(1), pages 31-52, January.
    6. Haberman, Steven & Butt, Zoltan & Megaloudi, Chryssoula, 2000. "Contribution and solvency risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 237-259, October.
    7. Pun, Chi Seng & Wong, Hoi Ying, 2016. "Robust non-zero-sum stochastic differential reinsurance game," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 169-177.
    8. Ken Binmore & Lisa Stewart & Alex Voorhoeve, 2012. "How much ambiguity aversion?," Journal of Risk and Uncertainty, Springer, vol. 45(3), pages 215-238, December.
    9. Clara Severinson, 2008. "Accounting for Defined Benefit Plans: An International Comparison of Exchange-Listed Companies," OECD Working Papers on Insurance and Private Pensions 23, OECD Publishing.
    10. Jingyun Sun & Yongjun Li & Ling Zhang, 2018. "Robust portfolio choice for a defined contribution pension plan with stochastic income and interest rate," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(17), pages 4106-4130, September.
    11. Huang, Hong-Chih & Cairns, Andrew J.G., 2006. "On the control of defined-benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 113-131, February.
    12. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    13. Guan, Guohui & Liang, Zongxia & Feng, Jian, 2018. "Time-consistent proportional reinsurance and investment strategies under ambiguous environment," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 122-133.
    14. Joel T. Harper & Stephen D. Treanor, 2014. "Pension Conversion, Termination, and Wealth Transfers," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(1), pages 177-198, March.
    15. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.
    16. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    17. In-Mu Haw & William Ruland & Ahmed Hamdallah, 1988. "Investor Evaluation Of Overfunded Pension Plan Terminations," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 11(1), pages 81-88, March.
    18. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    19. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2019. "Robust non-zero-sum investment and reinsurance game with default risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 115-132.
    20. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
    21. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    22. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    23. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    24. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    2. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    3. Josa-Fombellida, Ricardo & López-Casado, Paula, 2023. "A defined benefit pension plan game with Brownian and Poisson jumps uncertainty," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1294-1311.
    4. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    5. Ying Zhao & Hui Mi & Lixia Xu, 2022. "Robust Optimal Investment Problem with Delay under Heston’s Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1271-1296, June.
    6. Feng, Yang & Zhu, Jinxia & Siu, Tak Kuen, 2021. "Optimal risk exposure and dividend payout policies under model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 1-29.
    7. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    8. Gu, Ailing & Viens, Frederi G. & Yi, Bo, 2017. "Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 235-249.
    9. Bo Yi & Frederi Viens & Baron Law & Zhongfei Li, 2015. "Dynamic portfolio selection with mispricing and model ambiguity," Annals of Finance, Springer, vol. 11(1), pages 37-75, February.
    10. Ayşegül İşcanog̃lu-Çekiç, 2016. "An Optimal Turkish Private Pension Plan with a Guarantee Feature," Risks, MDPI, vol. 4(3), pages 1-12, June.
    11. Baltas, I. & Dopierala, L. & Kolodziejczyk, K. & Szczepański, M. & Weber, G.-W. & Yannacopoulos, A.N., 2022. "Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1162-1174.
    12. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    13. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    14. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    15. Peng, Xingchun & Chen, Fenge & Wang, Wenyuan, 2021. "Robust optimal investment and reinsurance for an insurer with inside information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 15-30.
    16. Chen, Dengsheng & He, Yong & Li, Ziqiang, 2023. "Robust optimal reinsurance–investment for α-maxmin mean–variance utility under Heston’s SV model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    17. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    18. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    19. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    20. Yacine Aït-Sahalia & Felix Matthys & Emilio Osambela & Ronnie Sircar, 2021. "When Uncertainty and Volatility Are Disconnected: Implications for Asset Pricing and Portfolio Performance," NBER Working Papers 29195, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.09121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.