IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v106y2022icp193-217.html
   My bibliography  Save this article

Robust equilibrium strategies in a defined benefit pension plan game

Author

Listed:
  • Guan, Guohui
  • Hu, Jiaqi
  • Liang, Zongxia

Abstract

This paper investigates the robust non-zero-sum games in an aggregated overfunded defined benefit pension plan. The sponsoring firm is concerned with the investment performance of the fund surplus, while the participants act like a union to claim a share of the fund surplus. The financial market consists of one risk-free asset and n risky assets. The firm and the union are ambiguous about the financial market and care about the robust strategies under the worst-case scenario. The union's objective is to maximize the expected discounted utility of the additional benefits. The firm's two objectives are to maximize the expected discounted utility of the fund surplus and the probability of the fund surplus reaching an upper level before hitting a lower level in the worst-case scenario. We present a general robust non-zero-sum game with stopping times, which contains the two objectives as special cases. Hamilton-Jacobi-Bellman-Isaacs equations and verification theorem are presented for the robust optimization problem. We obtain explicit solutions in the related two robust non-zero-sum games for the firm and the union. Numerical results are illustrated to depict the economic behaviors of the robust equilibrium strategies in these two different games.

Suggested Citation

  • Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
  • Handle: RePEc:eee:insuma:v:106:y:2022:i:c:p:193-217
    DOI: 10.1016/j.insmatheco.2022.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722000762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    3. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    4. Olivier J. Blanchard, 1993. "Movements in the Equity Premium," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 24(2), pages 75-138.
    5. Hainaut, Donatien & Deelstra, Griselda, 2011. "Optimal funding of defined benefit pension plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 10(1), pages 31-52, January.
    6. Haberman, Steven & Butt, Zoltan & Megaloudi, Chryssoula, 2000. "Contribution and solvency risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 237-259, October.
    7. Branger, Nicole & Larsen, Linda Sandris & Munk, Claus, 2013. "Robust portfolio choice with ambiguity and learning about return predictability," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1397-1411.
    8. Jingyun Sun & Yongjun Li & Ling Zhang, 2018. "Robust portfolio choice for a defined contribution pension plan with stochastic income and interest rate," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(17), pages 4106-4130, September.
    9. Huang, Hong-Chih & Cairns, Andrew J.G., 2006. "On the control of defined-benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 113-131, February.
    10. Joel T. Harper & Stephen D. Treanor, 2014. "Pension Conversion, Termination, and Wealth Transfers," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(1), pages 177-198, March.
    11. Raman Uppal & Tan Wang, 2003. "Model Misspecification and Underdiversification," Journal of Finance, American Finance Association, vol. 58(6), pages 2465-2486, December.
    12. Pun, Chi Seng & Wong, Hoi Ying, 2015. "Robust investment–reinsurance optimization with multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 245-256.
    13. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    14. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    15. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
    16. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    17. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    18. Chen, Zhiping & Yang, Peng, 2020. "Robust optimal reinsurance–investment strategy with price jumps and correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 27-46.
    19. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    20. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    21. Zhao, Hui & Shen, Yang & Zeng, Yan & Zhang, Wenjun, 2019. "Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean–variance insurer with ambiguity aversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 159-180.
    22. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    23. Pun, Chi Seng & Wong, Hoi Ying, 2016. "Robust non-zero-sum stochastic differential reinsurance game," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 169-177.
    24. Ken Binmore & Lisa Stewart & Alex Voorhoeve, 2012. "How much ambiguity aversion?," Journal of Risk and Uncertainty, Springer, vol. 45(3), pages 215-238, December.
    25. Clara Severinson, 2008. "Accounting for Defined Benefit Plans: An International Comparison of Exchange-Listed Companies," OECD Working Papers on Insurance and Private Pensions 23, OECD Publishing.
    26. Lars Peter Hansen & Thomas J Sargent, 2014. "A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 4, pages 83-143, World Scientific Publishing Co. Pte. Ltd..
    27. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    28. Guan, Guohui & Liang, Zongxia & Feng, Jian, 2018. "Time-consistent proportional reinsurance and investment strategies under ambiguous environment," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 122-133.
    29. Wang, Pei & Li, Zhongfei, 2018. "Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 67-83.
    30. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.
    31. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    32. In-Mu Haw & William Ruland & Ahmed Hamdallah, 1988. "Investor Evaluation Of Overfunded Pension Plan Terminations," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 11(1), pages 81-88, March.
    33. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2019. "Robust non-zero-sum investment and reinsurance game with default risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 115-132.
    34. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    35. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    36. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    37. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josa-Fombellida, Ricardo & López-Casado, Paula, 2023. "A defined benefit pension plan game with Brownian and Poisson jumps uncertainty," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1294-1311.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guohui Guan & Jiaqi Hu & Zongxia Liang, 2021. "Robust equilibrium strategies in a defined benefit pension plan game," Papers 2103.09121, arXiv.org.
    2. Wang, Ning & Zhang, Yumo, 2023. "Robust optimal asset-liability management with mispricing and stochastic factor market dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 251-273.
    3. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    4. He, Yong & Zhou, Xia & Chen, Peimin & Wang, Xiaoyang, 2022. "An analytical solution for the robust investment-reinsurance strategy with general utilities," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    5. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    6. Wang, Pei & Li, Zhongfei, 2018. "Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 67-83.
    7. Baltas, I. & Dopierala, L. & Kolodziejczyk, K. & Szczepański, M. & Weber, G.-W. & Yannacopoulos, A.N., 2022. "Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1162-1174.
    8. Feng, Yang & Zhu, Jinxia & Siu, Tak Kuen, 2021. "Optimal risk exposure and dividend payout policies under model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 1-29.
    9. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    10. Len Patrick Dominic M. Garces & Yang Shen, 2024. "Robust optimal investment and consumption strategies with portfolio constraints and stochastic environment," Papers 2407.02831, arXiv.org.
    11. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    12. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    13. Chen, Zhiping & Yang, Peng, 2020. "Robust optimal reinsurance–investment strategy with price jumps and correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 27-46.
    14. Horváth, Ferenc, 2017. "Essays on robust asset pricing," Other publications TiSEM e54d7b33-1f27-4b0e-9f84-f, Tilburg University, School of Economics and Management.
    15. Ya Huang & Xiangqun Yang & Jieming Zhou, 2017. "Robust optimal investment and reinsurance problem for a general insurance company under Heston model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 305-326, April.
    16. Gu, Ailing & Viens, Frederi G. & Yao, Haixiang, 2018. "Optimal robust reinsurance-investment strategies for insurers with mean reversion and mispricing," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 93-109.
    17. Flor, Christian Riis & Hesel, Søren, 2015. "Uncertain dynamics, correlation effects, and robust investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 278-298.
    18. Balter, Anne G. & Mahayni, Antje & Schweizer, Nikolaus, 2021. "Time-consistency of optimal investment under smooth ambiguity," European Journal of Operational Research, Elsevier, vol. 293(2), pages 643-657.
    19. Branger, Nicole & Larsen, Linda Sandris, 2013. "Robust portfolio choice with uncertainty about jump and diffusion risk," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5036-5047.
    20. Liu, Bing & Meng, Hui & Zhou, Ming, 2021. "Optimal investment and reinsurance policies for an insurer with ambiguity aversion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).

    More about this item

    Keywords

    Overfunded DB pension plan; Robust control; Stochastic differential game; Nash equilibrium; Stochastic dynamic programming;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:106:y:2022:i:c:p:193-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.