IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v21y1997i1p43-79.html
   My bibliography  Save this article

Stochastic pension fund modelling

Author

Listed:
  • Cairns, Andrew J. G.
  • Parker, Gary

Abstract

No abstract is available for this item.

Suggested Citation

  • Cairns, Andrew J. G. & Parker, Gary, 1997. "Stochastic pension fund modelling," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 43-79, October.
  • Handle: RePEc:eee:insuma:v:21:y:1997:i:1:p:43-79
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(97)00018-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haberman, S., 1994. "Autoregressive rates of return and the variability of pension contributions and fund levels for a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 14(3), pages 219-240, July.
    2. Zimbidis, Alexandros & Haberman, Steven, 1993. "Delay, feedback and variability of pension contributions and fund levels," Insurance: Mathematics and Economics, Elsevier, vol. 13(3), pages 271-285, December.
    3. Dufresne, Daniel, 1989. "Stability of pension systems when rates of return are random," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 71-76, March.
    4. Haberman, Steven, 1992. "Pension funding with time delays : A stochastic approach," Insurance: Mathematics and Economics, Elsevier, vol. 11(3), pages 179-189, October.
    5. Dhaene, Jan, 1989. "Stochastic Interest Rates and Autoregressive Integrated Moving Average Processes," ASTIN Bulletin, Cambridge University Press, vol. 19(S1), pages 43-50, November.
    6. Haberman, Steven, 1993. "Pension funding with time delays and autoregressive rates of investment return," Insurance: Mathematics and Economics, Elsevier, vol. 13(1), pages 45-56, September.
    7. Parker, Gary, 1995. "A second order stochastic differential equation for the force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 16(3), pages 211-224, July.
    8. Wilkie, A.D., 1995. "More on a Stochastic Asset Model for Actuarial Use," British Actuarial Journal, Cambridge University Press, vol. 1(5), pages 777-964, December.
    9. Wilkie, A.D., 1995. "The Risk Premium on Ordinary Shares," British Actuarial Journal, Cambridge University Press, vol. 1(2), pages 251-330, June.
    10. Haberman, Steven, 1993. "Pension funding : The effect of changing the frequency of valuations," Insurance: Mathematics and Economics, Elsevier, vol. 13(3), pages 263-270, December.
    11. Parker, Gary, 1994. "Limiting Distribution of the Present Value of a Portfolio," ASTIN Bulletin, Cambridge University Press, vol. 24(1), pages 47-60, May.
    12. Black, Fischer & Perold, AndreF., 1992. "Theory of constant proportion portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 403-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nolde, Natalia & Parker, Gary, 2014. "Stochastic analysis of life insurance surplus," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 1-13.
    2. Chao-Liang Chen, 2005. "The funding for a Defined Benefit (DB) pension plan based on the fair valuation of the plan's insolvency risk," Applied Economics, Taylor & Francis Journals, vol. 37(14), pages 1623-1633.
    3. Chang, Shih-Chieh & Chen, Chiang-Chu, 2002. "Allocating unfunded liability in pension valuation under uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 371-387, June.
    4. T. Gudaitis & A. Fiori Maccioni, 2014. "Optimal Individual Choice of Contribution to Second Pillar Pension System in Lithuania," Working Paper CRENoS 201402, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    5. Haberman, Steven & Butt, Zoltan & Megaloudi, Chryssoula, 2000. "Contribution and solvency risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 237-259, October.
    6. A. Fiori Maccioni & A. Bitinas, 2013. "Lithuanian pension system's reforms following demographic and social transitions," Working Paper CRENoS 201315, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    7. Spyridon D Vrontos & Ioannis D Vrontos & Loukia Meligkotsidou, 2013. "Asset-liability management for pension funds in a time-varying volatility environment," Journal of Asset Management, Palgrave Macmillan, vol. 14(5), pages 306-333, October.
    8. Khorasanee, Zaki, 2005. "Benefit uncertainty and default risk in pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 469-493, December.
    9. Gabay, Daniel & Grasselli, Martino, 2012. "Fair demographic risk sharing in defined contribution pension systems," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 657-669.
    10. John Board & Charles Sutcliffe, 2007. "Joined-Up Pensions Policy in the UK: An Asset-Liability Model for Simultaneously Determining the Asset Allocation and Contribution Rate," Economic Analysis, Institute of Economic Sciences, vol. 40(3-4), pages 87-118.
    11. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2006. "Optimal investment decisions with a liability: The case of defined benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 81-98, August.
    12. Alessandro Fiori Maccioni, 2011. "A Stochastic Model for the Analysis of Demographic Risk in Pay-As-You-Go Pension Funds," Papers 1106.5081, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haberman, Steven & Lam, Yuk Patrick & Wong, 1997. "Moving average rates of return and the variability of pension contributions and fund levels for a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 115-135, September.
    2. John Board & Charles Sutcliffe, 2007. "Joined-Up Pensions Policy in the UK: An Asset-Liability Model for Simultaneously Determining the Asset Allocation and Contribution Rate," Economic Analysis, Institute of Economic Sciences, vol. 40(3-4), pages 87-118.
    3. Chang, Shih-Chieh, 1999. "Optimal pension funding through dynamic simulations: the case of Taiwan public employees retirement system," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 187-199, May.
    4. Chang, Shih-Chieh & Chen, Chiang-Chu, 2002. "Allocating unfunded liability in pension valuation under uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 371-387, June.
    5. Chang, S. C. & Tzeng, Larry Y. & Miao, Jerry C. Y., 2003. "Pension funding incorporating downside risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 217-228, April.
    6. Huang, Hong-Chih & Cairns, Andrew J.G., 2006. "On the control of defined-benefit pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 113-131, February.
    7. Miao Jerry C.Y. & Wang Jennifer L., 2006. "Intertemporal Stable Pension Funding," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 1(2), pages 1-15, February.
    8. Taylor, Greg, 2002. "Stochastic control of funding systems," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 323-350, June.
    9. Haberman, Steven, 1997. "Stochastic investment returns and contribution rate risk in a defined benefit pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 127-139, April.
    10. Mandl, Petr & Mazurova, Lucie, 1996. "Harmonic analysis of pension funding methods," Insurance: Mathematics and Economics, Elsevier, vol. 17(3), pages 203-214, April.
    11. Gerrard, R. & Haberman, S., 1996. "Stability of pension systems when gains/losses are amortized and rates of return are autoregressive," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 59-71, May.
    12. Parker, Gary, 1995. "A second order stochastic differential equation for the force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 16(3), pages 211-224, July.
    13. Blake, David & Cairns, Andrew J. G. & Dowd, Kevin, 2001. "Pensionmetrics: stochastic pension plan design and value-at-risk during the accumulation phase," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 187-215, October.
    14. Milevsky, Moshe Arye, 1997. "The present value of a stochastic perpetuity and the Gamma distribution," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 243-250, October.
    15. Marceau, Etienne & Gaillardetz, Patrice, 1999. "On life insurance reserves in a stochastic mortality and interest rates environment," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 261-280, December.
    16. Hoedemakers, Tom & Darkiewicz, Grzegorz & Goovaerts, Marc, 2005. "Approximations for life annuity contracts in a stochastic financial environment," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 239-269, October.
    17. Josh Lerner, 2002. "Where Does State Street Lead? A First Look at Finance Patents, 1971 to 2000," Journal of Finance, American Finance Association, vol. 57(2), pages 901-930, April.
    18. Johanna Scheller & Jacques Pézier, 2008. "Optimal Investment Strategies and Performance Sharing Rules for Pension Schemes with Minimum Guarantee," ICMA Centre Discussion Papers in Finance icma-dp2008-09, Henley Business School, University of Reading, revised Oct 2009.
    19. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    20. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:21:y:1997:i:1:p:43-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.