IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v111y2023icp57-83.html
   My bibliography  Save this article

Dynamic asset-liability management with frictions

Author

Listed:
  • Yan, Tingjin
  • Han, Jinhui
  • Ma, Guiyuan
  • Siu, Chi Chung

Abstract

This paper studies a dynamic asset-liability management problem of a company with market frictions. Specifically, the asset prices are modeled by a multivariate geometric Brownian motion with their excess returns driven by some correlated stochastic signals; and the liability process is modeled by another geometric Brownian motion correlated to the asset price dynamics. The company trades dynamically to offset the risks from its liability and each trade induces both temporary and persistent price impacts. We characterize the optimal trading strategies in terms of the solutions to the coupled matrix Riccati differential systems. Due to the price impacts, the company should adopt a target-chasing strategy in which the dynamic target portfolio is expressed in terms of the return-predicting signals and realized liability. We also derive some sufficient conditions, based on the model parameters alone, to ensure the well-posedness of the coupled Riccati systems. Our numerical results indicate that the temporary and persistent price impacts have opposite implications on the company's trading behavior. While the temporary price impact slows down the company's trading speed toward the target portfolio, the persistent price impact may encourage the company to trade more aggressively to enhance the expected returns.

Suggested Citation

  • Yan, Tingjin & Han, Jinhui & Ma, Guiyuan & Siu, Chi Chung, 2023. "Dynamic asset-liability management with frictions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 57-83.
  • Handle: RePEc:eee:insuma:v:111:y:2023:i:c:p:57-83
    DOI: 10.1016/j.insmatheco.2023.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668723000252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2023.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Jinhui & Ma, Guiyuan & Yam, Sheung Chi Phillip, 2022. "Relative performance evaluation for dynamic contracts in a large competitive market," European Journal of Operational Research, Elsevier, vol. 302(2), pages 768-780.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Paul Glasserman & Xingbo Xu, 2013. "Robust Portfolio Control with Stochastic Factor Dynamics," Operations Research, INFORMS, vol. 61(4), pages 874-893, August.
    4. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    5. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    6. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    7. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    8. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2019. "Dynamic portfolio choice with return predictability and transaction costs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 976-988.
    9. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    10. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    11. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    12. Vincent Van Kervel & Albert J. Menkveld, 2019. "High‐Frequency Trading around Large Institutional Orders," Journal of Finance, American Finance Association, vol. 74(3), pages 1091-1137, June.
    13. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    14. Chen, Ping & Yang, Hailiang & Yin, George, 2008. "Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 456-465, December.
    15. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    16. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2020. "Optimal investment and consumption with return predictability and execution costs," Economic Modelling, Elsevier, vol. 88(C), pages 408-419.
    17. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    18. Chiu, Mei Choi & Li, Duan, 2006. "Asset and liability management under a continuous-time mean-variance optimization framework," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 330-355, December.
    19. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    20. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    21. Moallemi, Ciamac C. & Sağlam, Mehmet, 2017. "Dynamic Portfolio Choice with Linear Rebalancing Rules," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(3), pages 1247-1278, June.
    22. Gârleanu, Nicolae & Pedersen, Lasse Heje, 2016. "Dynamic portfolio choice with frictions," Journal of Economic Theory, Elsevier, vol. 165(C), pages 487-516.
    23. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2022. "Portfolio choice with return predictability and small trading frictions," Economic Modelling, Elsevier, vol. 111(C).
    24. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    25. Gerard Gennotte & Alan Jung, 1994. "Investment Strategies under Transaction Costs: The Finite Horizon Case," Management Science, INFORMS, vol. 40(3), pages 385-404, March.
    26. Ibrahim Ekren & Johannes Muhle‐Karbe, 2019. "Portfolio choice with small temporary and transient price impact," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1066-1115, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ning & Zhang, Yumo, 2023. "Robust optimal asset-liability management with mispricing and stochastic factor market dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 251-273.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2022. "Portfolio choice with return predictability and small trading frictions," Economic Modelling, Elsevier, vol. 111(C).
    2. Alain Bensoussan & Guiyuan Ma & Chi Chung Siu & Sheung Chi Phillip Yam, 2022. "Dynamic mean–variance problem with frictions," Finance and Stochastics, Springer, vol. 26(2), pages 267-300, April.
    3. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2020. "Optimal investment and consumption with return predictability and execution costs," Economic Modelling, Elsevier, vol. 88(C), pages 408-419.
    4. Puru Gupta & Saul D. Jacka, 2023. "Portfolio Choice In Dynamic Thin Markets: Merton Meets Cournot," Papers 2309.16047, arXiv.org.
    5. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    6. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    7. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    8. Masamitsu Ohnishi & Makoto Shimoshimizu, 2022. "Optimal Pair–Trade Execution with Generalized Cross–Impact," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(2), pages 253-289, June.
    9. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2019. "Dynamic portfolio choice with return predictability and transaction costs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 976-988.
    10. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    11. Masamitsu Ohnishi & Makoto Shimoshimizu, 2024. "Trade execution games in a Markovian environment," Papers 2405.07184, arXiv.org.
    12. Eduardo Abi Jaber & Eyal Neuman & Sturmius Tuschmann, 2024. "Optimal Portfolio Choice with Cross-Impact Propagators," Papers 2403.10273, arXiv.org.
    13. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    14. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    15. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    16. Jorge Guijarro-Ordonez, 2019. "High-dimensional statistical arbitrage with factor models and stochastic control," Papers 1901.09309, arXiv.org, revised Jun 2021.
    17. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    18. Ren Liu & Johannes Muhle-Karbe & Marko H. Weber, 2014. "Rebalancing with Linear and Quadratic Costs," Papers 1402.5306, arXiv.org, revised Sep 2017.
    19. Amélie Charles & Olivier Darné & Jae H. Kim, 2022. "Stock return predictability: Evaluation based on interval forecasts," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
    20. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.

    More about this item

    Keywords

    Asset-liability management; Temporary and persistent price impacts; Return predictability; Target-chasing strategy; Coupled matrix Riccati differential system;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:111:y:2023:i:c:p:57-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.