IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1704.00847.html
   My bibliography  Save this paper

Incorporating Signals into Optimal Trading

Author

Listed:
  • Charles-Albert Lehalle
  • Eyal Neuman

Abstract

Optimal trading is a recent field of research which was initiated by Almgren, Chriss, Bertsimas and Lo in the late 90's. Its main application is slicing large trading orders, in the interest of minimizing trading costs and potential perturbations of price dynamics due to liquidity shocks. The initial optimization frameworks were based on mean-variance minimization for the trading costs. In the past 15 years, finer modelling of price dynamics, more realistic control variables and different cost functionals were developed. The inclusion of signals (i.e. short term predictors of price dynamics) in optimal trading is a recent development and it is also the subject of this work. We incorporate a Markovian signal in the optimal trading framework which was initially proposed by Gatheral, Schied, and Slynko [21] and provide results on the existence and uniqueness of an optimal trading strategy. Moreover, we derive an explicit singular optimal strategy for the special case of an Ornstein-Uhlenbeck signal and an exponentially decaying transient market impact. The combination of a mean-reverting signal along with a market impact decay is of special interest, since they affect the short term price variations in opposite directions. Later, we show that in the asymptotic limit were the transient market impact becomes instantaneous, the optimal strategy becomes continuous. This result is compatible with the optimal trading framework which was proposed by Cartea and Jaimungal [10]. In order to support our models, we analyse nine months of tick by tick data on 13 European stocks from the NASDAQ OMX exchange. We show that orderbook imbalance is a predictor of the future price move and it has some mean-reverting properties. From this data we show that market participants, especially high frequency traders, use this signal in their trading strategies.

Suggested Citation

  • Charles-Albert Lehalle & Eyal Neuman, 2017. "Incorporating Signals into Optimal Trading," Papers 1704.00847, arXiv.org, revised Jun 2018.
  • Handle: RePEc:arx:papers:1704.00847
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1704.00847
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles-Albert Lehalle & Sophie Laruelle (ed.), 2013. "Market Microstructure in Practice," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8967, August.
    2. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    3. Alexander Lipton & Umberto Pesavento & Michael G Sotiropoulos, 2013. "Trade arrival dynamics and quote imbalance in a limit order book," Papers 1312.0514, arXiv.org.
    4. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "How to predict the consequences of a tick value change? Evidence from the Tokyo Stock Exchange pilot program," Papers 1507.07052, arXiv.org.
    5. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    6. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    7. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    8. Eyal Neuman & Alexander Schied, 2016. "Optimal portfolio liquidation in target zone models and catalytic superprocesses," Finance and Stochastics, Springer, vol. 20(2), pages 495-509, April.
    9. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    10. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    11. Pietro Fodra & Huyên Pham, 2015. "Semi-Markov Model for Market Microstructure," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 261-295, July.
    12. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Optimal Portfolio Liquidation with Limit Orders," Papers 1106.3279, arXiv.org, revised Jul 2012.
    13. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    14. Charles-Albert Lehalle & Othmane Mounjid, 2016. "Limit Order Strategic Placement with Adverse Selection Risk and the Role of Latency," Papers 1610.00261, arXiv.org, revised Mar 2018.
    15. Tse & Forsyth & Kennedy & Windcliff, 2013. "Comparison Between the Mean-Variance Optimal and the Mean-Quadratic-Variation Optimal Trading Strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(5), pages 415-449, November.
    16. Vincent Van Kervel & Albert J. Menkveld, 2019. "High‐Frequency Trading around Large Institutional Orders," Journal of Finance, American Finance Association, vol. 74(3), pages 1091-1137, June.
    17. Pietro Fodra & Huy^en Pham, 2013. "Semi Markov model for market microstructure," Papers 1305.0105, arXiv.org.
    18. Alfonsi Aurélien & Alexander Schied & Alla Slynko, 2012. "Order Book Resilience, Price Manipulation, and the Positive Portfolio Problem," Post-Print hal-00941333, HAL.
    19. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2017. "Optimal execution with non-linear transient market impact," Quantitative Finance, Taylor & Francis Journals, vol. 17(1), pages 41-54, January.
    20. Álvaro Cartea & Sebastian Jaimungal, 2015. "Risk Metrics And Fine Tuning Of High-Frequency Trading Strategies," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 576-611, July.
    21. Eyal Neuman & Alexander Schied, 2015. "Optimal Portfolio Liquidation in Target Zone Models and Catalytic Superprocesses," Papers 1504.06031, arXiv.org, revised Jul 2015.
    22. Alexander Schied, 2012. "A control problem with fuel constraint and Dawson-Watanabe superprocesses," Papers 1207.5809, arXiv.org, revised Dec 2013.
    23. Abergel,Frédéric & Anane,Marouane & Chakraborti,Anirban & Jedidi,Aymen & Muni Toke,Ioane, 2016. "Limit Order Books," Cambridge Books, Cambridge University Press, number 9781107163980, October.
    24. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    25. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    26. �lvaro Cartea & Sebastian Jaimungal, 2013. "Modelling Asset Prices for Algorithmic and High-Frequency Trading," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(6), pages 512-547, December.
    27. Kyle Bechler & Michael Ludkovski, 2017. "Order Flows and Limit Order Book Resiliency on the Meso-Scale," Papers 1708.02715, arXiv.org.
    28. Frédéric Abergel & Anirban Chakraborti & Aymen Jedidi & Ioane Muni Toke & Marouane Anane, 2016. "Limit Order Books," Post-Print hal-02177394, HAL.
    29. Pietro Fodra & Huyên Pham, 2013. "Semi Markov model for market microstructure," Working Papers hal-00819269, HAL.
    30. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    2. Federico Gonzalez & Mark Schervish, 2017. "Instantaneous order impact and high-frequency strategy optimization in limit order books," Papers 1707.01167, arXiv.org, revised Oct 2017.
    3. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Damiano Brigo & Federico Graceffa & Eyal Neuman, 2022. "Price impact on term structure," Quantitative Finance, Taylor & Francis Journals, vol. 22(1), pages 171-195, January.
    5. Qinghua Li, 2014. "Facilitation and Internalization Optimal Strategy in a Multilateral Trading Context," Papers 1404.7320, arXiv.org, revised Jan 2015.
    6. Christoph Belak & Johannes Muhle-Karbe & Kevin Ou, 2018. "Optimal Trading with General Signals and Liquidation in Target Zone Models," Papers 1808.00515, arXiv.org.
    7. Lokka, A. & Xu, Junwei, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model," LSE Research Online Documents on Economics 106977, London School of Economics and Political Science, LSE Library.
    8. Charles-Albert Lehalle & Charafeddine Mouzouni, 2019. "A mean field game of portfolio trading and its consequences on perceived correlations," Working Papers hal-02003143, HAL.
    9. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    10. Aur'elien Alfonsi & Alexander Schied & Florian Klock, 2013. "Multivariate transient price impact and matrix-valued positive definite functions," Papers 1310.4471, arXiv.org, revised Sep 2015.
    11. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    12. Arne Lokka & Junwei Xu, 2020. "Optimal liquidation trajectories for the Almgren-Chriss model with Levy processes," Papers 2002.03376, arXiv.org, revised Sep 2020.
    13. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    14. Eyal Neuman & Moritz Vo{ss}, 2020. "Optimal Signal-Adaptive Trading with Temporary and Transient Price Impact," Papers 2002.09549, arXiv.org, revised Jan 2022.
    15. Aur'elien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Papers 1506.08740, arXiv.org.
    16. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Finance and Stochastics, Springer, vol. 20(1), pages 183-218, January.
    17. S. C. P. Yam & W. Zhou, 2017. "Optimal Liquidation of Child Limit Orders," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 517-545, May.
    18. Antoine Jacquier & Hao Liu, 2017. "Optimal liquidation in a Level-I limit order book for large tick stocks," Papers 1701.01327, arXiv.org, revised Nov 2017.
    19. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    20. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.

    More about this item

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1704.00847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.