IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i4p1311-1319.html
   My bibliography  Save this article

Order selection and sparsity in latent variable models via the ordered factor LASSO

Author

Listed:
  • Francis K. C. Hui
  • Emi Tanaka
  • David I. Warton

Abstract

Generalized linear latent variable models (GLLVMs) offer a general framework for flexibly analyzing data involving multiple responses. When fitting such models, two of the major challenges are selecting the order, that is, the number of factors, and an appropriate structure for the loading matrix, typically a sparse structure. Motivated by the application of GLLVMs to study marine species assemblages in the Southern Ocean, we propose the Ordered Factor LASSO or OFAL penalty for order selection and achieving sparsity in GLLVMs. The OFAL penalty is the first penalty developed specifically for order selection in latent variable models, and achieves this by using a hierarchically structured group LASSO type penalty to shrink entire columns of the loading matrix to zero, while ensuring that non‐zero loadings are concentrated on the lower‐order factors. Simultaneously, individual element sparsity is achieved through the use of an adaptive LASSO. In conjunction with using an information criterion which promotes aggressive shrinkage, simulation shows that the OFAL penalty performs strongly compared with standard methods and penalties for order selection, achieving sparsity, and prediction in GLLVMs. Applying the OFAL penalty to the Southern Ocean marine species dataset suggests the available environmental predictors explain roughly half of the total covariation between species, thus leading to a smaller number of latent variables and increased sparsity in the loading matrix compared to a model without any covariates.

Suggested Citation

  • Francis K. C. Hui & Emi Tanaka & David I. Warton, 2018. "Order selection and sparsity in latent variable models via the ordered factor LASSO," Biometrics, The International Biometric Society, vol. 74(4), pages 1311-1319, December.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:4:p:1311-1319
    DOI: 10.1111/biom.12888
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12888
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xuanming & Huang, Fei & Hui, Francis K.C. & Haberman, Steven, 2023. "Cause-of-death mortality forecasting using adaptive penalized tensor decompositions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 193-213.
    2. Jenni Niku & Francis K. C. Hui & Sara Taskinen & David I. Warton, 2021. "Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    3. Hui, Francis K.C. & Müller, Samuel & Welsh, A.H., 2020. "The LASSO on latent indices for regression modeling with ordinal categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    4. Francis K.C. Hui & Nicole A. Hill & A.H. Welsh, 2022. "Assuming independence in spatial latent variable models: Consequences and implications of misspecification," Biometrics, The International Biometric Society, vol. 78(1), pages 85-99, March.
    5. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    6. Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:4:p:1311-1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.