IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v102y2022icp42-55.html
   My bibliography  Save this article

Stackelberg differential game for reinsurance: Mean-variance framework and random horizon

Author

Listed:
  • Li, Danping
  • Young, Virginia R.

Abstract

We consider a reinsurance problem for a mean-variance Stackelberg game with a random time horizon, in which an insurer and a reinsurer are the two players. The reinsurer computes its premium according to the mean-variance premium principle with parameters (θ,η)∈R+2. First, for any pair (θ,η)∈R+2, we compute the per-loss reinsurance strategy that maximizes a mean-variance functional of the insurer's surplus at the end of the random horizon. This reinsurance strategy is excess-of-loss reinsurance with constant proportional reinsurance for losses above the deductible. Then, given the information of what the insurer will choose when offered any mean-variance premium principle, we determine the optimal pair (θ⁎,η⁎)∈R+2 that maximizes the reinsurer's expected surplus at the end of the random horizon. We show that the equilibrium deductible and coinsurance are both independent of the risk aversion parameter of the insurer. We also show that if the claim severity is light-tailed, in the sense that its hazard rate function is non-decreasing, then the equilibrium reinsurance is pure excess-of-loss reinsurance with no loading for the variance of the loss. Moreover, we show that if the claim severity is heavy-tailed, in the sense that its hazard rate function is decreasing, then the equilibrium reinsurance has a non-trivial coinsurance, with a positive loading for the variance of the loss. Finally, we solve four examples to illustrate these latter two, important results.

Suggested Citation

  • Li, Danping & Young, Virginia R., 2022. "Stackelberg differential game for reinsurance: Mean-variance framework and random horizon," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 42-55.
  • Handle: RePEc:eee:insuma:v:102:y:2022:i:c:p:42-55
    DOI: 10.1016/j.insmatheco.2021.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721001724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Fung-Yee & Gerber, Hans U., 1985. "The Reinsurer's Monopoly and the Bowley Solution," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 141-148, November.
    2. Li, Danping & Young, Virginia R., 2021. "Bowley solution of a mean–variance game in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 35-43.
    3. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    4. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    5. Bai, Lihua & Guo, Junyi, 2008. "Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 968-975, June.
    6. Chen, Lv & Shen, Yang, 2018. "On A New Paradigm Of Optimal Reinsurance: A Stochastic Stackelberg Differential Game Between An Insurer And A Reinsurer," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 905-960, May.
    7. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    8. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    9. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    10. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2022. "Stackelberg differential game for insurance under model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 128-145.
    2. Guohui Guan & Zongxia Liang & Yilun Song, 2022. "A Stackelberg reinsurance-investment game under $\alpha$-maxmin mean-variance criterion and stochastic volatility," Papers 2212.14327, arXiv.org.
    3. Qiang Zhang & Qianqian Cui, 2024. "Robust Investment and Proportional Reinsurance Strategy with Delay and Jumps in a Stochastic Stackelberg Differential Game," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-34, December.
    4. Zongxia Liang & Yi Xia & Bin Zou, 2024. "A Two-layer Stochastic Game Approach to Reinsurance Contracting and Competition," Papers 2405.06235, arXiv.org, revised Sep 2024.
    5. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    2. Chen, Yanhong & Cheung, Ka Chun & Zhang, Yiying, 2024. "Bowley solution under the reinsurer's default risk," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 36-61.
    3. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    4. Liyuan Lin & Fangda Liu & Jingzhen Liu abd Luyang Yu, 2023. "The optimal reinsurance strategy with price-competition between two reinsurers," Papers 2305.00509, arXiv.org.
    5. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    6. Landriault, David & Li, Bin & Li, Danping & Li, Dongchen, 2016. "A pair of optimal reinsurance–investment strategies in the two-sided exit framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 284-294.
    7. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    8. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    9. Cao, Jingyi & Landriault, David & Li, Bin, 2020. "Optimal reinsurance-investment strategy for a dynamic contagion claim model," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 206-215.
    10. Bensalem, Sarah & Santibáñez, Nicolás Hernández & Kazi-Tani, Nabil, 2020. "Prevention efforts, insurance demand and price incentives under coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 369-386.
    11. Zhu, Michael B. & Ghossoub, Mario & Boonen, Tim J., 2023. "Equilibria and efficiency in a reinsurance market," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 24-49.
    12. Anthropelos, Michail & Boonen, Tim J., 2020. "Nash equilibria in optimal reinsurance bargaining," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 196-205.
    13. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    14. Zhang, Xin & Meng, Hui & Zeng, Yan, 2016. "Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 125-132.
    15. Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
    16. Li, Danping & Young, Virginia R., 2021. "Bowley solution of a mean–variance game in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 35-43.
    17. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    18. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    19. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    20. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.

    More about this item

    Keywords

    Stackelberg differential game; Reinsurance; Mean-variance premium; Random time horizon; Mean-variance criterion; Time-inconsistency;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:102:y:2022:i:c:p:42-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.