IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v311y2023i2p581-595.html
   My bibliography  Save this article

Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework

Author

Listed:
  • Yuan, Yu
  • Han, Xia
  • Liang, Zhibin
  • Yuen, Kam Chuen

Abstract

In this paper, we study the optimal time-consistent reinsurance-investment problem for a risk model with the thinning-dependence structure. The insurer’s wealth process is described by a jump-diffusion risk model with two dependent classes of insurance business. We assume that the insurer is allowed to purchase per-loss reinsurance and invest its surplus in a financial market consisting of a risk-free asset and a risky asset. Also, the performance-related capital inflow or outflow feature is introduced, and the wealth process is modeled by a stochastic delay differential equation. Under the time-inconsistent mean-variance criterion, we derive the explicit optimal reinsurance-investment strategy and value function under the expected value premium principle as well as the variance premium principle by solving the extended Hamilton–Jacobi–Bellman (HJB) delay system. In particular, we prove the existence and uniqueness of the optimal strategy under the expected value premium principle. Finally, some numerical examples are provided to illustrate the influence of model parameters on the optimal strategy.

Suggested Citation

  • Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
  • Handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:581-595
    DOI: 10.1016/j.ejor.2023.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723003879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    2. A, Chunxiang & Li, Zhongfei, 2015. "Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 181-196.
    3. Xia Han & Zhibin Liang & Kam Chuen Yuen, 2018. "Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(10), pages 863-889, November.
    4. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Liang, Xiaoqing & Young, Virginia R., 2018. "Minimizing the probability of ruin: Optimal per-loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 181-190.
    7. Cai, Jun & Wei, Wei, 2012. "Optimal reinsurance with positively dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 57-63.
    8. Junna Bi & Junyi Guo, 2013. "Optimal Mean-Variance Problem with Constrained Controls in a Jump-Diffusion Financial Market for an Insurer," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 252-275, April.
    9. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    10. Liang, Xue & Wang, Guojing, 2012. "On a reduced form credit risk model with common shock and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 567-575.
    11. Lihua Bai & Junyi Guo & Huayue Zhang, 2010. "Optimal excess-of-loss reinsurance and dividend payments with both transaction costs and taxes," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1163-1172.
    12. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    13. Yichun Chi & X. Sheldon Lin & Ken Seng Tan, 2017. "Optimal Reinsurance Under the Risk-Adjusted Value of an Insurer’s Liability and an Economic Reinsurance Premium Principle," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 417-432, July.
    14. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    15. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    16. Qiang Zhang & Ping Chen, 2020. "Optimal Reinsurance and Investment Strategy for an Insurer in a Model with Delay and Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 777-801, June.
    17. Danping Li & Yan Zeng & Hailiang Yang, 2018. "Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(2), pages 145-171, February.
    18. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.
    19. Zhibin Liang & Junna Bi & Kam Chuen Yuen & Caibin Zhang, 2016. "Optimal mean–variance reinsurance and investment in a jump-diffusion financial market with common shock dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 155-181, August.
    20. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    21. Mou-Hsiung Chang & Tao Pang & Yipeng Yang, 2011. "A Stochastic Portfolio Optimization Model with Bounded Memory," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 604-619, November.
    22. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    23. Matteo Brachetta & Hanspeter Schmidli, 2020. "Optimal reinsurance and investment in a diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 341-361, June.
    24. Mi Chen & Kam Chuen Yuen & Wenyuan Wang, 2021. "Optimal reinsurance and dividends with transaction costs and taxes under thinning structure," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2021(3), pages 198-217, March.
    25. Han, Xia & Liang, Zhibin & Zhang, Caibin, 2019. "Optimal proportional reinsurance with common shock dependence to minimise the probability of drawdown," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 268-294, September.
    26. Yu Yuan & Zhibin Liang & Xia Han, 2022. "Robust reinsurance contract with asymmetric information in a stochastic Stackelberg differential game," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2022(4), pages 328-355, April.
    27. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    28. Salvatore Federico, 2011. "A stochastic control problem with delay arising in a pension fund model," Finance and Stochastics, Springer, vol. 15(3), pages 421-459, September.
    29. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
    30. Zeng, Yan & Li, Danping & Gu, Ailing, 2016. "Robust equilibrium reinsurance-investment strategy for a mean–variance insurer in a model with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 138-152.
    31. Hipp, Christian & Taksar, Michael, 2010. "Optimal non-proportional reinsurance control," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 246-254, October.
    32. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Wang, Guojing & Yao, Jing, 2024. "Time-consistent reinsurance-investment games for multiple mean-variance insurers with mispricing and default risks," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 79-107.
    2. Zhang, Caibin & Liang, Zhibin & Yuan, Yu, 2024. "Stochastic differential investment and reinsurance game between an insurer and a reinsurer under thinning dependence structure," European Journal of Operational Research, Elsevier, vol. 315(1), pages 213-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    2. Qiang Zhang & Ping Chen, 2020. "Optimal Reinsurance and Investment Strategy for an Insurer in a Model with Delay and Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 777-801, June.
    3. Yuchen Li & Zongxia Liang & Shunzhi Pang, 2022. "Continuous-Time Monotone Mean-Variance Portfolio Selection in Jump-Diffusion Model," Papers 2211.12168, arXiv.org, revised May 2024.
    4. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    5. Cong, F. & Oosterlee, C.W., 2016. "On pre-commitment aspects of a time-consistent strategy for a mean-variance investor," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 178-193.
    6. Zhang, Caibin & Liang, Zhibin & Yuan, Yu, 2024. "Stochastic differential investment and reinsurance game between an insurer and a reinsurer under thinning dependence structure," European Journal of Operational Research, Elsevier, vol. 315(1), pages 213-227.
    7. Li, Danping & Li, Dongchen & Young, Virginia R., 2017. "Optimality of excess-loss reinsurance under a mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 82-89.
    8. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    9. Yanfei Bai & Zhongbao Zhou & Helu Xiao & Rui Gao & Feimin Zhong, 2021. "A stochastic Stackelberg differential reinsurance and investment game with delay in a defaultable market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 341-381, December.
    10. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.
    11. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    12. Pun, Chi Seng, 2018. "Time-consistent mean-variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 75(C), pages 281-292.
    13. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    14. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    15. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    16. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    17. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    18. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    19. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    20. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:311:y:2023:i:2:p:581-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.