IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.01704.html
   My bibliography  Save this paper

Performance-based variable premium scheme and reinsurance design

Author

Listed:
  • David Landriault
  • Fangda Liu
  • Ziyue Shi

Abstract

In the literature, insurance and reinsurance pricing is typically determined by a premium principle, characterized by a risk measure that reflects the policy seller's risk attitude. Building on the work of Meyers (1980) and Chen et al. (2016), we propose a new performance-based variable premium scheme for reinsurance policies, where the premium depends on both the distribution of the ceded loss and the actual realized loss. Under this scheme, the insurer and the reinsurer face a random premium at the beginning of the policy period. Based on the realized loss, the premium is adjusted into either a ''reward'' or ''penalty'' scenario, resulting in a discount or surcharge at the end of the policy period. We characterize the optimal reinsurance policy from the insurer's perspective under this new variable premium scheme. In addition, we formulate a Bowley optimization problem between the insurer and the monopoly reinsurer. Numerical examples demonstrate that, compared to the expected-value premium principle, the reinsurer prefers the variable premium scheme as it reduces the reinsurer's total risk exposure.

Suggested Citation

  • David Landriault & Fangda Liu & Ziyue Shi, 2024. "Performance-based variable premium scheme and reinsurance design," Papers 2412.01704, arXiv.org.
  • Handle: RePEc:arx:papers:2412.01704
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.01704
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim J. Boonen & Ka Chun Cheung & Yiying Zhang, 2021. "Bowley reinsurance with asymmetric information on the insurer's risk preferences," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2021(7), pages 623-644, August.
    2. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    3. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    4. Tim J. Boonen & Yiying Zhang, 2022. "Bowley reinsurance with asymmetric information: a first-best solution," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2022(6), pages 532-551, July.
    5. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    6. Gerber, Hans U., 1984. "Chains of reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 3(1), pages 43-48, January.
    7. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    8. Young, Virginia R., 1999. "Optimal insurance under Wang's premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 109-122, November.
    9. Chan, Fung-Yee & Gerber, Hans U., 1985. "The Reinsurer's Monopoly and the Bowley Solution," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 141-148, November.
    10. Li, Danping & Young, Virginia R., 2021. "Bowley solution of a mean–variance game in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 35-43.
    11. Van Heerwaarden, A. E. & Kaas, R. & Goovaerts, M. J., 1989. "Optimal reinsurance in relation to ordering of risks," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 11-17, March.
    12. Chen, Xinxiang & Chi, Yichun & Tan, Ken Seng, 2016. "The Design Of An Optimal Retrospective Rating Plan," ASTIN Bulletin, Cambridge University Press, vol. 46(1), pages 141-163, January.
    13. De Waegenaere, Anja & Kast, Robert & Lapied, Andre, 2003. "Choquet pricing and equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 359-370, July.
    14. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    15. Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanhong & Cheung, Ka Chun & Zhang, Yiying, 2024. "Bowley solution under the reinsurer's default risk," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 36-61.
    2. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    3. Li, Danping & Young, Virginia R., 2022. "Stackelberg differential game for reinsurance: Mean-variance framework and random horizon," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 42-55.
    4. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    5. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    6. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "The role of a representative reinsurer in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 196-204.
    7. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    8. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    9. Anthropelos, Michail & Boonen, Tim J., 2020. "Nash equilibria in optimal reinsurance bargaining," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 196-205.
    10. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    11. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    12. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    13. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    14. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    15. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    16. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    17. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2023. "Optimal moral-hazard-free reinsurance under extended distortion premium principles," Papers 2304.08819, arXiv.org.
    18. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    19. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    20. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.01704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.