IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v15y1985i02p141-148_00.html
   My bibliography  Save this article

The Reinsurer's Monopoly and the Bowley Solution

Author

Listed:
  • Chan, Fung-Yee
  • Gerber, Hans U.

Abstract

The reinsurer has a monopoly in the following sense: He will select a random variable P that determines the reinsurance premiums. The first insurer can purchase a payment of R (a random variable) for a premium of π = E[PR]. For known P, the first insurer chooses R to maximize his expected utility. Knowing this, i.e., the demand for reinsurance as a function of P, the reinsurer chooses P to maximize his utility. The resulting pair (P, R) is called the Bowley solution. Assuming exponential, quadratic and/or linear utility functions, some explicit results are obtained.

Suggested Citation

  • Chan, Fung-Yee & Gerber, Hans U., 1985. "The Reinsurer's Monopoly and the Bowley Solution," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 141-148, November.
  • Handle: RePEc:cup:astinb:v:15:y:1985:i:02:p:141-148_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100005237/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danping & Young, Virginia R., 2021. "Bowley solution of a mean–variance game in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 35-43.
    2. Chen, Yanhong & Cheung, Ka Chun & Zhang, Yiying, 2024. "Bowley solution under the reinsurer's default risk," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 36-61.
    3. Zhu, Michael B. & Ghossoub, Mario & Boonen, Tim J., 2023. "Equilibria and efficiency in a reinsurance market," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 24-49.
    4. Anthropelos, Michail & Boonen, Tim J., 2020. "Nash equilibria in optimal reinsurance bargaining," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 196-205.
    5. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    6. Tang, Qihe & Tong, Zhiwei & Xun, Li, 2022. "Portfolio risk analysis of excess of loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 91-110.
    7. Li, Danping & Young, Virginia R., 2022. "Stackelberg differential game for reinsurance: Mean-variance framework and random horizon," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 42-55.
    8. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    9. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    10. Bensalem, Sarah & Santibáñez, Nicolás Hernández & Kazi-Tani, Nabil, 2020. "Prevention efforts, insurance demand and price incentives under coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 369-386.
    11. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    12. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    13. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:15:y:1985:i:02:p:141-148_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.