IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.06235.html
   My bibliography  Save this paper

A Two-layer Stochastic Game Approach to Reinsurance Contracting and Competition

Author

Listed:
  • Zongxia Liang
  • Yi Xia
  • Bin Zou

Abstract

We propose a two-layer stochastic game model to study reinsurance contracting and competition in a market with one insurer and two competing reinsurers. The insurer negotiates with both reinsurers simultaneously for proportional reinsurance contracts that are priced using the variance premium principle. The reinsurance contracting between the insurer and each reinsurer is modeled as a Stackelberg game. The two reinsurers compete for business from the insurer and optimize the so-called relative performance, instead of their own surplus, and their competition is settled by a noncooperative Nash game. We obtain a sufficient and necessary condition, related to the competition degrees of the two reinsurers, for the existence of an equilibrium. We show that the equilibrium, if exists, is unique, and the equilibrium strategy of each player is constant, fully characterized in semiclosed form. Furthermore, we obtain interesting sensitivity results for the equilibrium strategies through both analytical and numerical studies.

Suggested Citation

  • Zongxia Liang & Yi Xia & Bin Zou, 2024. "A Two-layer Stochastic Game Approach to Reinsurance Contracting and Competition," Papers 2405.06235, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2405.06235
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.06235
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Danping & Young, Virginia R., 2022. "Stackelberg differential game for reinsurance: Mean-variance framework and random horizon," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 42-55.
    2. Zhibin Liang & Kam Chuen Yuen, 2016. "Optimal dynamic reinsurance with dependent risks: variance premium principle," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(1), pages 18-36, January.
    3. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    4. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.
    5. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with $\boldsymbol{{n}}$ variance-premium reinsurers: from tree to chain," ASTIN Bulletin, Cambridge University Press, vol. 53(3), pages 706-728, September.
    6. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    7. Jun Cai & Yichun Chi, 2020. "Optimal reinsurance designs based on risk measures: a review," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 1-13, July.
    8. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    9. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    10. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    11. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    12. Jun Cai & Yichun Chi, 2020. "Responses to discussions on ‘Optimal reinsurance designs based on risk measures: a review’," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 26-27, July.
    13. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    14. Hanspeter Schmidli, 2001. "Optimal Proportional Reinsurance Policies in a Dynamic Setting," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2001(1), pages 55-68.
    15. Zhou, Ming & Yuen, Kam C., 2012. "Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle," Economic Modelling, Elsevier, vol. 29(2), pages 198-207.
    16. Ken Tan & Chengguo Weng & Yi Zhang, 2009. "VAR and CTE Criteria for Optimal Quota-Share and Stop-Loss Reinsurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 459-482.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    2. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    3. Tim J. Boonen & Yuyu Chen & Xia Han & Qiuqi Wang, 2024. "Optimal insurance design with Lambda-Value-at-Risk," Papers 2408.09799, arXiv.org.
    4. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.
    5. Guohui Guan & Zongxia Liang & Yilun Song, 2022. "A Stackelberg reinsurance-investment game under $\alpha$-maxmin mean-variance criterion and stochastic volatility," Papers 2212.14327, arXiv.org.
    6. Meng, Hui & Zhou, Ming & Siu, Tak Kuen, 2016. "Optimal reinsurance policies with two reinsurers in continuous time," Economic Modelling, Elsevier, vol. 59(C), pages 182-195.
    7. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2023. "Optimal moral-hazard-free reinsurance under extended distortion premium principles," Papers 2304.08819, arXiv.org.
    8. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    9. Asimit, Alexandru V. & Boonen, Tim J. & Chi, Yichun & Chong, Wing Fung, 2021. "Risk sharing with multiple indemnity environments," European Journal of Operational Research, Elsevier, vol. 295(2), pages 587-603.
    10. Sancho Salcedo-Sanz & Leo Carro-Calvo & Mercè Claramunt & Ana Castañer & Maite Mármol, 2014. "Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms," Risks, MDPI, vol. 2(2), pages 1-14, April.
    11. Meng, Hui & Liao, Pu & Siu, Tak Kuen, 2019. "Continuous-time optimal reinsurance strategy with nontrivial curved structures," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    12. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    13. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    14. Ernst, Philip A. & Imerman, Michael B. & Shepp, Larry & Zhou, Quan, 2022. "Fiscal stimulus as an optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1091-1108.
    15. Bai, Yanfei & Zhou, Zhongbao & Xiao, Helu & Gao, Rui & Zhong, Feimin, 2022. "A hybrid stochastic differential reinsurance and investment game with bounded memory," European Journal of Operational Research, Elsevier, vol. 296(2), pages 717-737.
    16. Hirbod Assa & Peng Liu, 2024. "Factor risk measures," Papers 2404.08475, arXiv.org.
    17. Benjamin Avanzi & Hayden Lau & Mogens Steffensen, 2022. "Optimal reinsurance design under solvency constraints," Papers 2203.16108, arXiv.org, revised Jun 2023.
    18. Chen, Lv & Shen, Yang & Su, Jianxi, 2020. "A continuous-time theory of reinsurance chains," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 129-146.
    19. Chi, Yichun & Liu, Fangda, 2021. "Enhancing an insurer's expected value by reinsurance and external financing," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 466-484.
    20. Zhu, Yunzhou & Chi, Yichun & Weng, Chengguo, 2014. "Multivariate reinsurance designs for minimizing an insurer’s capital requirement," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 144-155.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.06235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.