IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v273y2022ics0378377422004292.html
   My bibliography  Save this article

Novel hybrid machine learning framework with decomposition–transformation and identification of key modes for estimating reference evapotranspiration

Author

Listed:
  • Kang, Yan
  • Chen, Peiru
  • Cheng, Xiao
  • Zhang, Shuo
  • Song, Songbai

Abstract

The accurate estimation of reference evapotranspiration (ETo) is a fundamental requirement for precision irrigation and regional water resource planning. In this regard, the application of the standard model, FAO-56 Penman–Monteith, is limited because of insufficient meteorological data. This study aims to improve the accuracy of ETo calculations in regions with scarce meteorological data. A hybrid model integrating two data preprocessing methods (variational mode decomposition (VMD) and Box–Cox transformation (BC)) into a support vector machine (SVM) model (VMD–BC–SVM) is proposed. The model estimates the daily ETo based on the meteorological data (1980–2019) of 10 stations in the Wei River Basin of China. The VMD method was employed to extract multiple intrinsic mode functions (IMFs) and eliminate non-stationarity. This is achieved by decomposing meteorological factors, which are further transformed by BC to alleviate skewness characteristics. The least absolute shrinkage and selection operator regression (LASSO) identifies the key driving modes from the transformed IMFs, which are used as the input of the SVM model. The VMD–BC–SVM estimation model framework based on decomposition–transformation–identification–estimation is proposed. The performance of each of the hybrid VMD–BC–SVM models was further compared with those of the standalone extreme learning machine (ELM) model and two empirical models (Hargreaves–Samani and Priestley–Taylor models). The results revealed that the hybrid models outperformed the single models. The VMD–BC–SVM model achieved higher accuracy compared with the other models. Specifically, the coefficient of correlation (R) and Nash–Sutcliffe efficiency coefficient (NSE) were both greater than 0.96. Furthermore, the mean absolute percentage error (MAPE) and root mean square error (RMSE) were less than 8.41% and 0.38 mm/d, respectively. In terms of the amount of information provided, the VMD–BC–SVM model is superior to empirical models in identifying high-dimensional and nonlinear information. Moreover, the estimation performance is more stable, and the level of uncertainty is lower. This study provides a novel approach for predicting ETo in regions with limited meteorological data.

Suggested Citation

  • Kang, Yan & Chen, Peiru & Cheng, Xiao & Zhang, Shuo & Song, Songbai, 2022. "Novel hybrid machine learning framework with decomposition–transformation and identification of key modes for estimating reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004292
    DOI: 10.1016/j.agwat.2022.107882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
    2. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
    3. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    5. Taís Maria Nunes Carvalho & Francisco Souza Filho, 2021. "Variational Mode Decomposition Hybridized With Gradient Boost Regression for Seasonal Forecast of Residential Water Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3431-3445, August.
    6. Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
    7. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    8. Valle Júnior, Luiz C.G. & Ventura, Thiago M. & Gomes, Raphael S.R. & de S. Nogueira, José & de A. Lobo, Francisco & Vourlitis, George L. & Rodrigues, Thiago R., 2020. "Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna," Agricultural Water Management, Elsevier, vol. 232(C).
    9. Shirmohammadi-Aliakbarkhani, Zahra & Saberali, Seyed Farhad, 2020. "Evaluating of eight evapotranspiration estimation methods in arid regions of Iran," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Ferreira, Lucas Borges & da Cunha, Fernando França, 2020. "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning," Agricultural Water Management, Elsevier, vol. 234(C).
    11. Mohammad Ehteram & Vijay P Singh & Ahmad Ferdowsi & Sayed Farhad Mousavi & Saeed Farzin & Hojat Karami & Nuruol Syuhadaa Mohd & Haitham Abdulmohsin Afan & Sai Hin Lai & Ozgur Kisi & M A Malek & Ali Na, 2019. "An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Ho-Jun & Chandrasekara, Sewwandhi & Kwon, Hyun-Han & Lima, Carlos & Kim, Tae-woong, 2023. "A novel multi-scale parameter estimation approach to the Hargreaves-Samani equation for estimation of Penman-Monteith reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
    2. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Dilip Kumar Roy & Tapash Kumar Sarkar & Sujit Kumar Biswas & Bithin Datta, 2023. "Generalized Daily Reference Evapotranspiration Models Based on a Hybrid Optimization Algorithm Tuned Fuzzy Tree Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 193-218, January.
    4. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    7. Jia Luo & Xianming Dou & Mingguo Ma, 2022. "Evaluation of Empirical and Machine Learning Approaches for Estimating Monthly Reference Evapotranspiration with Limited Meteorological Data in the Jialing River Basin, China," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    8. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    9. Ahmadi, Farshad & Mehdizadeh, Saeid & Mohammadi, Babak & Pham, Quoc Bao & DOAN, Thi Ngoc Canh & Vo, Ngoc Duong, 2021. "Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Ramtin Moeini & Kamran Nasiri & Seyed Hossein Hosseini, 2024. "Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4137-4159, September.
    11. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    13. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    14. Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Bemah Ibrahim & Isaac Ahenkorah & Anthony Ewusi, 2022. "Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    16. Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.
    17. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    18. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    19. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    20. Ippolito, Matteo & De Caro, Dario & Cannarozzo, Marcella & Provenzano, Giuseppe & Ciraolo, Giuseppe, 2024. "Evaluation of daily crop reference evapotranspiration and sensitivity analysis of FAO Penman-Monteith equation using ERA5-Land reanalysis database in Sicily, Italy," Agricultural Water Management, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.