IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i3s1751157724000749.html
   My bibliography  Save this article

An approach for identifying complementary patents based on deep learning

Author

Listed:
  • Zhang, Jinzhu
  • Shi, Jialu
  • Zhang, Peiyu

Abstract

Current studies on technology mining and analysis often focus on patent similarity, with relatively limited research on patent complementarity. Specifically, the hierarchical relationships among patents are seldom used and a standardized complementary patents dataset has not been established. In addition, it is necessary to utilize both network structure features and text content features of patents, and find the most suitable representation learning method for them. Finally, the relationships among different dimensions of feature representations are complex, making it essential to learn the contributions of each dimension considering complex interactions. Therefore, this paper first constructs a complementary patents dataset using hierarchical relationships contained in IPC numbers. Secondly, we design three types of embedding methods for patent semantic representation, including network embedding, text embedding and fusion embedding. Thirdly, we propose a deep learning framework enhanced by the CBAM (Convolutional Block Attention Module) to deal with the complex interactions between different dimensions of patent representation. The result shows that the proposed method CompGCN combined with ESimCSE_Attention performs best for complementary patent identification and the F1 score reaches 95.76 %. In addition, HeGAN and ESimCSE_Attention are the most suitable embedding methods for network structure and text content respectively. These results not only validate the effectiveness of the proposed approach, but also provide helpful and useful suggestions for method selection and complex relationships mining.

Suggested Citation

  • Zhang, Jinzhu & Shi, Jialu & Zhang, Peiyu, 2024. "An approach for identifying complementary patents based on deep learning," Journal of Informetrics, Elsevier, vol. 18(3).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:3:s1751157724000749
    DOI: 10.1016/j.joi.2024.101561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:3:s1751157724000749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.