IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i1s1751157723001128.html
   My bibliography  Save this article

Do scholars' collaborative tendencies impact the quality of their publications? A generalized propensity score matching analysis

Author

Listed:
  • Liu, Qiuling
  • Guo, Lei
  • Sun, Yiping
  • Ren, Linlin
  • Wang, Xinhua
  • Han, Xiaohui

Abstract

Recently, the research on the cooperation relationship between authors has received widespread attention. However, existing studies still have the following limitations: 1) They mainly study the impact of author collaboration patterns by correlation analysis without considering the existence of confounding factors. 2) Methods based on causal analysis primarily focus on exploring the impact of different cooperation models, while less considering the author's tendency to participate. 3) Previous studies fail to incorporate the structural attributes of the authors' cooperation network into covariates, which may lead to confounding bias. To overcome the above limitations, we further explore the causal effect of authors' participation levels on the quality of their publications by leveraging the Generalized Propensity Score Matching (GPSM) method. Moreover, to alleviate the influence of the structural features in the authors' cooperation network, we then take the typical structural features as covariates, preventing us from reaching incorrect conclusions caused by the variable bias. We conduct extensive experiments on a real-world dataset (collected from the Web of Science (WoS) core collection), and from the experimental results, we find that authors having different involvement tendencies usually have publications with different qualities. Specifically, we observe an “inverted U-shaped” curve on authors' participation tendencies. That is, the quality of papers first rises and then decreases with the increase of authors' participation tendencies, which means that researchers who excessively collaborate with others actually experience a decrease in average paper quality.

Suggested Citation

  • Liu, Qiuling & Guo, Lei & Sun, Yiping & Ren, Linlin & Wang, Xinhua & Han, Xiaohui, 2024. "Do scholars' collaborative tendencies impact the quality of their publications? A generalized propensity score matching analysis," Journal of Informetrics, Elsevier, vol. 18(1).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:1:s1751157723001128
    DOI: 10.1016/j.joi.2023.101487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157723001128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2023.101487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    2. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    3. Sei‐Ching Joanna Sin, 2011. "International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(9), pages 1770-1783, September.
    4. Ali Gazni & Fereshteh Didegah, 2011. "Investigating different types of research collaboration and citation impact: a case study of Harvard University’s publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 251-265, May.
    5. Loet Leydesdorff & Tobias Opthof, 2010. "Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(11), pages 2365-2369, November.
    6. Gerard Pasterkamp & Joris I. Rotmans & Dominique V. P. Kleijn & Cornelius Borst, 2007. "Citation frequency: A biased measure of research impact significantly influenced by the geographical origin of research articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 153-165, January.
    7. André Andrian Padial & João Carlos Nabout & Tadeu Siqueira & Luis Mauricio Bini & José Alexandre Felizola Diniz-Filho, 2010. "Weak evidence for determinants of citation frequency in ecological articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 1-12, October.
    8. Linton Freeman, 1980. "The gatekeeper, pair-dependency and structural centrality," Quality & Quantity: International Journal of Methodology, Springer, vol. 14(4), pages 585-592, August.
    9. Clément Bosquet & Pierre-Philippe Combes, 2013. "Are academics who publish more also more cited? Individual determinants of publication and citation records," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 831-857, December.
    10. Hanna-Mari Puuska & Reetta Muhonen & Yrjö Leino, 2014. "International and domestic co-publishing and their citation impact in different disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 823-839, February.
    11. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    12. Necmi K. Avkiran, 2013. "An empirical investigation of the influence of collaboration in Finance on article impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 911-925, June.
    13. Kamal Badar & Julie M. Hite & Yuosre F. Badir, 2013. "Examining the relationship of co-authorship network centrality and gender on academic research performance: the case of chemistry researchers in Pakistan," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 755-775, February.
    14. Frederick Owusu-Nimo & Nelius Boshoff, 2017. "Research collaboration in Ghana: patterns, motives and roles," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1099-1121, March.
    15. Liu, Jialin & Chen, Hongkan & Liu, Zhibo & Bu, Yi & Gu, Weiye, 2022. "Non-linearity between referencing behavior and citation impact: A large-scale, discipline-level analysis," Journal of Informetrics, Elsevier, vol. 16(3).
    16. Erjia Yan & Ying Ding, 2009. "Applying centrality measures to impact analysis: A coauthorship network analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(10), pages 2107-2118, October.
    17. Liming Liang & Ling Zhu, 2002. "Major factors affecting China's inter-regional research collaboration: Regional scientific productivity and geographical proximity," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(2), pages 287-316, August.
    18. Natsuo Onodera & Fuyuki Yoshikane, 2015. "Factors affecting citation rates of research articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(4), pages 739-764, April.
    19. Juan Gorraiz & Ralph Reimann & Christian Gumpenberger, 2012. "Key factors and considerations in the assessment of international collaboration: a case study for Austria and six countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 417-433, May.
    20. Bedoor K. AlShebli & Talal Rahwan & Wei Lee Woon, 2018. "The preeminence of ethnic diversity in scientific collaboration," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    21. Ortega, José Luis, 2014. "Influence of co-authorship networks in the research impact: Ego network analyses from Microsoft Academic Search," Journal of Informetrics, Elsevier, vol. 8(3), pages 728-737.
    22. Noriko Hara & Paul Solomon & Seung‐Lye Kim & Diane H. Sonnenwald, 2003. "An emerging view of scientific collaboration: Scientists' perspectives on collaboration and factors that impact collaboration," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(10), pages 952-965, August.
    23. Juan Xie & Kaile Gong & Jiang Li & Qing Ke & Hyonchol Kang & Ying Cheng, 2019. "A probe into 66 factors which are possibly associated with the number of citations an article received," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1429-1454, June.
    24. Sei-Ching Joanna Sin, 2011. "International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(9), pages 1770-1783, September.
    25. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    26. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Murgia, Gianluca, 2013. "Gender differences in research collaboration," Journal of Informetrics, Elsevier, vol. 7(4), pages 811-822.
    27. Erjia Yan & Ying Ding & Qinghua Zhu, 2010. "Mapping library and information science in China: a coauthorship network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 115-131, April.
    28. Stephen J. Bensman, 2008. "Distributional differences of the impact factor in the sciences versus the social sciences: An analysis of the probabilistic structure of the 2005 journal citation reports," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(9), pages 1366-1382, July.
    29. Katarina Prpić, 2002. "Gender and productivity differentials in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(1), pages 27-58, September.
    30. Benedita Marta Gomes Costa & Edilson da Silva Pedro & Gorete Ribeiro Macedo, 2013. "Scientific collaboration in biotechnology: the case of the northeast region in Brazil," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 571-592, May.
    31. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    32. Vanclay, Jerome K., 2013. "Factors affecting citation rates in environmental science," Journal of Informetrics, Elsevier, vol. 7(2), pages 265-271.
    33. Lawrence D. Fu & Constantin F. Aliferis, 2010. "Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 257-270, October.
    34. Shi Young Lee & Sanghack Lee & Sung Hee Jun, 2010. "Author and article characteristics, journal quality and citation in economic research," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1697-1701.
    35. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    36. Lutz Bornmann & Hans‐Dieter Daniel, 2007. "Multiple publication on a single research study: Does it pay? The influence of number of research articles on total citation counts in biomedicine," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(8), pages 1100-1107, June.
    37. Fan, Lingxu & Guo, Lei & Wang, Xinhua & Xu, Liancheng & Liu, Fangai, 2022. "Does the author’s collaboration mode lead to papers’ different citation impacts? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 16(4).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    2. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    3. Fan, Lingxu & Guo, Lei & Wang, Xinhua & Xu, Liancheng & Liu, Fangai, 2022. "Does the author’s collaboration mode lead to papers’ different citation impacts? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 16(4).
    4. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    5. Maksym Polyakov & Serhiy Polyakov & Md Sayed Iftekhar, 2017. "Does academic collaboration equally benefit impact of research across topics? The case of agricultural, resource, environmental and ecological economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1385-1405, December.
    6. Hongquan Shen & Juan Xie & Jiang Li & Ying Cheng, 2021. "The correlation between scientific collaboration and citation count at the paper level: a meta-analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3443-3470, April.
    7. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    8. Dehdarirad, Tahereh & Nasini, Stefano, 2017. "Research impact in co-authorship networks: a two-mode analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 371-388.
    9. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    10. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    11. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    12. Shanwu Tian & Xiurui Xu & Ping Li, 2021. "Acknowledgement network and citation count: the moderating role of collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7837-7857, September.
    13. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    14. Danielle H. Lee, 2019. "Predictive power of conference-related factors on citation rates of conference papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 281-304, January.
    15. Kazuki Nakajima & Kazuyuki Shudo & Naoki Masuda, 2023. "Higher-order rich-club phenomenon in collaborative research grant networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2429-2446, April.
    16. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    17. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.
    18. Sepideh Fahimifar & Khadijeh Mousavi & Fatemeh Mozaffari & Marcel Ausloos, 2023. "Identification of the most important external features of highly cited scholarly papers through 3 (i.e., Ridge, Lasso, and Boruta) feature selection data mining methods," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3685-3712, August.
    19. Radhamany Sooryamoorthy, 2017. "Do types of collaboration change citation? A scientometric analysis of social science publications in South Africa," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 379-400, April.
    20. Ha, Taehyun, 2022. "An explainable artificial-intelligence-based approach to investigating factors that influence the citation of papers," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:1:s1751157723001128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.