IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v10y2016i1p132-150.html
   My bibliography  Save this article

Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis

Author

Listed:
  • Yang, Siluo
  • Han, Ruizhen
  • Wolfram, Dietmar
  • Zhao, Yuehua

Abstract

We introduce the author keyword coupling analysis (AKCA) method to visualize the field of information science (2006–2015). We then compare the AKCA method with the author bibliographic coupling analysis (ABCA) method in terms of first- and all-author citation counts. We obtain the following findings: (1) The AKCA method is a new and feasible method for visualizing a discipline's structure, and the ABCA and AKCA methods have their respective strengths and emphases. The relation within the ABCA method is based on the same references (knowledge base), whereas that within the AKCA method is based on the same keywords (lexical linguistic). The AKCA method appears to provide a less detailed picture, and more uneven sub-areas of a discipline structure. The relationships between authors are narrow and direct and feature multiple levels in AKCA. (2) All-author coupling provides a comprehensive picture; thus, a complete view of a discipline structure may require both first- and all-author coupling analyses. (3) Information science evolved continuously during the second decade of the World Wide Web. The KDA (knowledge domain analysis) camp became remarkably prominent, while the IR camp (information retrieval) experienced a further decline in hard IR research, and became significantly smaller; Patent analysis and Open Access emerged during this period. Mapping of Science and Bibliometric evaluation also experienced substantial growth.

Suggested Citation

  • Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
  • Handle: RePEc:eee:infome:v:10:y:2016:i:1:p:132-150
    DOI: 10.1016/j.joi.2015.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157715301103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2015.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo Jarneving, 2005. "A comparison of two bibliometric methods for mapping of the research front," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(2), pages 245-263, November.
    2. Ying Yang & Mingzhi Wu & Lei Cui, 2012. "Integration of three visualization methods based on co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 659-673, February.
    3. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    4. Peter van den Besselaar & Gaston Heimeriks, 2006. "Mapping research topics using word-reference co-occurrences: A method and an exploratory case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 377-393, September.
    5. Ma, Ruimin, 2012. "Author bibliographic coupling analysis: A test based on a Chinese academic database," Journal of Informetrics, Elsevier, vol. 6(4), pages 532-542.
    6. M.H. MacRoberts & B.R. MacRoberts, 2010. "Problems of citation analysis: A study of uncited and seldom-cited influences," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 1-12, January.
    7. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    8. Richard Klavans & Kevin W. Boyack, 2011. "Using global mapping to create more accurate document‐level maps of research fields," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 1-18, January.
    9. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    10. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    11. Richard Klavans & Kevin W. Boyack, 2011. "Using global mapping to create more accurate document-level maps of research fields," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 1-18, January.
    12. M.H. MacRoberts & B.R. MacRoberts, 2010. "Problems of citation analysis: A study of uncited and seldom‐cited influences," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(1), pages 1-12, January.
    13. Siluo Yang & Junping Qiu & Zunyan Xiong, 2010. "An empirical study on the utilization of web academic resources in humanities and social sciences based on web citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(1), pages 1-19, July.
    14. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    15. Lin Zhang & Frizo Janssens & Liming Liang & Wolfgang Glänzel, 2010. "Journal cross-citation analysis for validation and improvement of journal-based subject classification in bibliometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 687-706, March.
    16. Jarneving, Bo, 2007. "Bibliographic coupling and its application to research-front and other core documents," Journal of Informetrics, Elsevier, vol. 1(4), pages 287-307.
    17. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    18. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    19. S. Ravikumar & Ashutosh Agrahari & S. N. Singh, 2015. "Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010)," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 929-955, January.
    20. Tahereh Dehdarirad & Anna Villarroya & Maite Barrios, 2014. "Research trends in gender differences in higher education and science: a co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 273-290, October.
    21. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    22. Per Ahlgren & Bo Jarneving & Ronald Rousseau, 2003. "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(6), pages 550-560, April.
    23. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    24. Zhong-Yi Wang & Gang Li & Chun-Ya Li & Ang Li, 2012. "Research on the semantic-based co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 855-875, March.
    25. Kun Lu & Dietmar Wolfram, 2012. "Measuring author research relatedness: A comparison of word-based, topic-based, and author cocitation approaches," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(10), pages 1973-1986, October.
    26. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    27. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    28. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    29. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    30. Nees Jan van Eck & Ludo Waltman, 2009. "How to normalize cooccurrence data? An analysis of some well‐known similarity measures," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1635-1651, August.
    31. Feifei Wang & Junping Qiu & Houqiang Yu, 2012. "Research on the cross-citation relationship of core authors in scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 1011-1033, June.
    32. Zhao, Dangzhi & Strotmann, Andreas, 2008. "Comparing all-author and first-author co-citation analyses of information science," Journal of Informetrics, Elsevier, vol. 2(3), pages 229-239.
    33. Naoki Shibata & Yuya Kajikawa & Yoshiyuki Takeda & Katsumori Matsushima, 2009. "Comparative study on methods of detecting research fronts using different types of citation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 571-580, March.
    34. Yang, Siluo & Wang, Feifei, 2015. "Visualizing information science: Author direct citation analysis in China and around the world," Journal of Informetrics, Elsevier, vol. 9(1), pages 208-225.
    35. Dangzhi Zhao & Andreas Strotmann, 2011. "Counting first, last, or all authors in citation analysis: A comprehensive comparison in the highly collaborative stem cell research field," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(4), pages 654-676, April.
    36. Dangzhi Zhao & Andreas Strotmann, 2011. "Counting first, last, or all authors in citation analysis: A comprehensive comparison in the highly collaborative stem cell research field," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(4), pages 654-676, April.
    37. Howard D. White & Katherine W. McCain, 1998. "Visualizing a discipline: An author co‐citation analysis of information science, 1972–1995," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(4), pages 327-355.
    38. Kun Lu & Dietmar Wolfram, 2012. "Measuring author research relatedness: A comparison of word‐based, topic‐based, and author cocitation approaches," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(10), pages 1973-1986, October.
    39. Dangzhi Zhao & Andreas Strotmann, 2008. "Information science during the first decade of the web: An enriched author cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(6), pages 916-937, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Abu Helal & Nathaniel Anderson & Yu Wei & Matthew Thompson, 2023. "A Review of Biomass-to-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization," Energies, MDPI, vol. 16(3), pages 1-32, January.
    2. Jong Hwan Suh, 2019. "SocialTERM-Extractor: Identifying and Predicting Social-Problem-Specific Key Noun Terms from a Large Number of Online News Articles Using Text Mining and Machine Learning Techniques," Sustainability, MDPI, vol. 11(1), pages 1-44, January.
    3. Guillaume Cabanac & Ingo Frommholz & Philipp Mayr, 2018. "Bibliometric-enhanced information retrieval: preface," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1225-1227, August.
    4. Kai Hu & Huayi Wu & Kunlun Qi & Jingmin Yu & Siluo Yang & Tianxing Yu & Jie Zheng & Bo Liu, 2018. "A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1031-1068, March.
    5. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    6. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    7. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    8. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    9. Munan Li, 2018. "Classifying and ranking topic terms based on a novel approach: role differentiation of author keywords," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 77-100, July.
    10. Yosuke Miyata & Emi Ishita & Fang Yang & Michimasa Yamamoto & Azusa Iwase & Keiko Kurata, 2020. "Knowledge structure transition in library and information science: topic modeling and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 665-687, October.
    11. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    12. Tsung-Ming Hsiao & Kuang-hua Chen, 2020. "The dynamics of research subfields for library and information science: an investigation based on word bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 717-737, October.
    13. Manuel Castriotta & Michela Loi & Elona Marku & Luca Naitana, 2019. "What’s in a name? Exploring the conceptual structure of emerging organizations," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 407-437, February.
    14. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    15. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
    16. Sabrina Petersohn & Thomas Heinze, 2018. "Professionalization of bibliometric research assessment. Insights from the history of the Leiden Centre for Science and Technology Studies (CWTS)," Science and Public Policy, Oxford University Press, vol. 45(4), pages 565-578.
    17. Yu-Wei Chang, 2018. "Examining interdisciplinarity of library and information science (LIS) based on LIS articles contributed by non-LIS authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1589-1613, September.
    18. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    19. Kai Hu & Kunlun Qi & Siluo Yang & Shengyu Shen & Xiaoqiang Cheng & Huayi Wu & Jie Zheng & Stephen McClure & Tianxing Yu, 2018. "Identifying the “Ghost City” of domain topics in a keyword semantic space combining citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1141-1157, March.
    20. Konstantina Ragazou & Ioannis Passas & Georgios Sklavos, 2022. "Investigating the Strategic Role of Digital Transformation Path of SMEs in the Era of COVID-19: A Bibliometric Analysis Using R," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    21. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    22. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Siluo & Wang, Feifei, 2015. "Visualizing information science: Author direct citation analysis in China and around the world," Journal of Informetrics, Elsevier, vol. 9(1), pages 208-225.
    2. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    3. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    4. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    5. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    6. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    7. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    8. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    9. Bu, Yi & Ni, Shaokang & Huang, Win-bin, 2017. "Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings," Journal of Informetrics, Elsevier, vol. 11(3), pages 810-822.
    10. García-Lillo, Francisco & Seva-Larrosa, Pedro & Sánchez-García, Eduardo, 2024. "On the basis of research on ‘green’ in the disciplines of management and business," Journal of Business Research, Elsevier, vol. 172(C).
    11. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    12. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    13. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    14. Yuen-Hsien Tseng & Ming-Yueh Tsay, 2013. "Journal clustering of library and information science for subfield delineation using the bibliometric analysis toolkit: CATAR," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 503-528, May.
    15. Ali Gazni & Fereshteh Didegah, 2016. "The relationship between authors’ bibliographic coupling and citation exchange: analyzing disciplinary differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 609-626, May.
    16. Hervas Oliver,Jose Luis & Gonzalez,Gregorio & Caja,Pedro, 2014. "Clusters and industrial districts: where is the literature going? Identifying emerging sub-fields of research," INGENIO (CSIC-UPV) Working Paper Series 201409, INGENIO (CSIC-UPV).
    17. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    18. Mu-hsuan Huang & Chia-Pin Chang, 2015. "A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2041-2057, March.
    19. García-Lillo, Francisco & Seva-Larrosa, Pedro & Sánchez-García, Eduardo, 2023. "What is going on in entrepreneurship research? A bibliometric and SNA analysis," Journal of Business Research, Elsevier, vol. 158(C).
    20. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:10:y:2016:i:1:p:132-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.