IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v1y2007i4p287-307.html
   My bibliography  Save this article

Bibliographic coupling and its application to research-front and other core documents

Author

Listed:
  • Jarneving, Bo

Abstract

Based on previous findings and theoretical considerations, it was suggested that bibliographic coupling could be combined with a cluster method to provide a method for science mapping, complementary to the prevailing co-citation cluster analytical method. The complete link cluster method was on theoretical grounds assumed to provide a suitable cluster method for this purpose. The objective of the study was to evaluate the proposed method's capability to identify coherent research themes. Applying a large multidisciplinary test bed comprising more than 600,000 articles and 17 million references, the proposed method was tested in accordance with two lines of mapping. In the first line of mapping, all significant (strong) links connecting ‘core documents’ (strongly and frequently coupled documents) in clusters with any other core document was mapped. This resulted in a depiction of all significant artificially broken links between core documents in a cluster and core documents extrinsic to that cluster. The second line of mapping involved the application of links between clusters only. They were used to successively merge clusters on two subsequent levels of fusion, where the first generation of clusters were considered objects for a second clustering, and the second generation of clusters gave rise to a final cluster fusion. Changes of cluster composition on the three levels were evaluated with regard to several variables. Findings showed that the proposed method could provide with valid depictions of current research, though some severe restrictions would adhere to its application.

Suggested Citation

  • Jarneving, Bo, 2007. "Bibliographic coupling and its application to research-front and other core documents," Journal of Informetrics, Elsevier, vol. 1(4), pages 287-307.
  • Handle: RePEc:eee:infome:v:1:y:2007:i:4:p:287-307
    DOI: 10.1016/j.joi.2007.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157707000594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2007.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo Jarneving, 2001. "The cognitive structure of current cardiovascular research," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 365-389, March.
    2. M. M. Kessler, 1965. "Comparison of the results of bibliographic coupling and analytic subject indexing," American Documentation, Wiley Blackwell, vol. 16(3), pages 223-233, July.
    3. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    4. Jean-Charles Lamirel & Claire Francois & Shadi Al Shehabi & Martial Hoffmann, 2004. "New classification quality estimators for analysis of documentary information: Application to patent analysis and web mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 445-562, August.
    5. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    6. H. P. F. Peters & R. R. Braam & A. F. J. van Raan, 1995. "Cognitive resemblance and citation relations in chemical engineering publications," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 46(1), pages 9-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jarneving, Bo, 2007. "Complete graphs and bibliographic coupling: A test of the applicability of bibliographic coupling for the identification of cognitive cores on the field level," Journal of Informetrics, Elsevier, vol. 1(4), pages 338-356.
    2. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    3. Bo Jarneving, 2001. "The cognitive structure of current cardiovascular research," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 365-389, March.
    4. Mu-hsuan Huang & Chia-Pin Chang, 2015. "A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2041-2057, March.
    5. Christian Sternitzke & Isumo Bergmann, 2009. "Similarity measures for document mapping: A comparative study on the level of an individual scientist," Scientometrics, Springer;Akadémiai Kiadó, vol. 78(1), pages 113-130, January.
    6. García-Lillo, Francisco & Seva-Larrosa, Pedro & Sánchez-García, Eduardo, 2023. "What is going on in entrepreneurship research? A bibliometric and SNA analysis," Journal of Business Research, Elsevier, vol. 158(C).
    7. Szu-Chia Lo, 2008. "Patent coupling analysis of primary organizations in genetic engineering research," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(1), pages 143-151, January.
    8. Ahlgren, Per & Colliander, Cristian, 2009. "Document–document similarity approaches and science mapping: Experimental comparison of five approaches," Journal of Informetrics, Elsevier, vol. 3(1), pages 49-63.
    9. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    10. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    11. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    12. Gangan Prathap & Somenath Mukherjee, 2020. "Letter to the Editor: Comments on the paper of Batagelj—on fractional approach to analysis of linked networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2717-2722, September.
    13. Chris W. Belter, 2013. "A bibliometric analysis of NOAA’s Office of Ocean Exploration and Research," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 629-644, May.
    14. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    15. Manta Eduard Mihai & Davidescu Adriana Ana Maria & Geambasu Maria Cristina & Florescu Margareta Stela, 2023. "Exploring the research area of direct taxation. An empirical analysis based on bibliometric analysis results," Management & Marketing, Sciendo, vol. 18(s1), pages 355-383, December.
    16. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    17. Raymundo das Neves Machado & Benjamín Vargas-Quesada & Jacqueline Leta, 2016. "Intellectual structure in stem cell research: exploring Brazilian scientific articles from 2001 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 525-537, February.
    18. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    19. Raphaël Maucuer & Alexandre Renaud & Sébastien Ronteau & Laurent Muzellec, 2022. "What can we learn from marketers? A bibliometric analysis of the marketing literature on business model research," Post-Print hal-03718522, HAL.
    20. Masaki Eto, 2013. "Evaluations of context-based co-citation searching," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 651-673, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:1:y:2007:i:4:p:287-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.